forked from ZephyrJung/keenwrite
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtex.Rmd
43 lines (22 loc) · 1.31 KB
/
tex.Rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
# ![Logo](../images/app-title.png)
# Real-time equation rendering
Interpolated variables within R calculations, formatted as an equation:
$\sqrt{`r#x( v$formula$sqrt$value)`} = \pm `r# round(sqrt(x( v$formula$sqrt$value )),5)`$
# Maxwell's equations
$rot \vec{E} = \frac{1}{c} \frac{\partial{\vec{B}}}{\partial t}, div \vec{B} = 0$
$rot \vec{B} = \frac{1}{c} \frac{\partial{\vec{E}}}{\partial t} + \frac{4\pi}{c} \vec{j}, div \vec{E} = 4 \pi \rho_{\varepsilon}$
# Time-dependent Schrödinger equation
$- \frac{{\hbar ^2 }}{{2m}}\frac{{\partial ^2 \psi (x,t)}}{{\partial x^2 }} + U(x)\psi (x,t) = i\hbar \frac{{\partial \psi (x,t)}}{{\partial t}}$
# Discrete-time Fourier transforms
Unit step function: $u(n) \Leftrightarrow \frac{1}{1-e^{-jw}} + \sum_{k=-\infty}^{\infty} \pi \delta (\omega + 2\pi k)$
Shifted delta: $\delta (n - n_o ) \Leftrightarrow e^{ - j\omega n_o }$
# Faraday's Law
$\oint_C {E \cdot d\ell = - \frac{d}{{dt}}} \int_S {B_n dA}$
# Infinite series
$sin(x) = \sum_{n = 1}^{\infty} {\frac{{( { - 1})^{n - 1} x^{2n - 1} }}{{( {2n - 1})!}}}$
# Magnetic flux
$\phi _m = \int_S {N{{B}} \cdot {{\hat n}}dA = } \int_S {NB_n dA}$
# Driven oscillation amplitude
$A = \frac{{F_0 }}{{\sqrt {m^2 ( {\omega _0^2 - \omega ^2 } )^2 + b^2 \omega ^2 } }}$
# Optics
$\phi = \frac{{2\pi }}{\lambda }a sin(\theta)$