forked from syasini/sophisticated_palette
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathapp.py
233 lines (175 loc) Β· 9.32 KB
/
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
import os
import sys
import pandas as pd
import numpy as np
import requests
from io import BytesIO
from glob import glob
from PIL import Image, ImageEnhance
import streamlit as st
sys.path.insert(0, ".")
from sophisticated_palette.utils import show_palette, model_dict, get_palette, \
sort_func_dict, store_palette, display_matplotlib_code, display_plotly_code,\
get_df_rgb, enhancement_range, plot_rgb_3d, plot_hsv_3d, print_praise
gallery_files = glob(os.path.join(".", "images", "*"))
gallery_dict = {image_path.split("/")[-1].split(".")[-2].replace("-", " "): image_path
for image_path in gallery_files}
st.image("logo.jpg")
st.sidebar.title("Sophisticated Palette π¨")
st.sidebar.caption("Tell your data story with style.")
st.sidebar.markdown("Made by [Siavash Yasini](https://www.linkedin.com/in/siavash-yasini/)")
st.sidebar.caption("Look behind the scenes of Sophisticated Palette [here](https://blog.streamlit.io/create-a-color-palette-from-any-image/).")
with st.sidebar.expander("See My Other Streamlit Apps"):
st.caption("Snowflake Cheat Sheet: [App](https://snow-flake-cheat-sheet.streamlit.app/) π, [Blog Post](https://medium.com/snowflake/the-ungifted-amateurs-guide-to-snowflake-449284e4bd72) π")
st.caption("Wordler: [App](https://wordler.streamlit.app/) π, [Blog Post](https://blog.streamlit.io/the-ultimate-wordle-cheat-sheet/) π")
st.caption("Koffee of the World: [App](https://koffee.streamlit.app/) π")
st.sidebar.markdown("---")
toggle = st.sidebar.checkbox("Toggle Update", value=True, help="Continuously update the pallete with every change in the app.")
click = st.sidebar.button("Find Palette", disabled=bool(toggle))
st.sidebar.markdown("---")
st.sidebar.header("Settings")
palette_size = int(st.sidebar.number_input("palette size", min_value=1, max_value=20, value=5, step=1, help="Number of colors to infer from the image."))
sample_size = int(st.sidebar.number_input("sample size", min_value=5, max_value=3000, value=500, step=500, help="Number of sample pixels to pick from the image."))
# Image Enhancement
enhancement_categories = enhancement_range.keys()
enh_expander = st.sidebar.expander("Image Enhancements", expanded=False)
with enh_expander:
if st.button("reset"):
for cat in enhancement_categories:
if f"{cat}_enhancement" in st.session_state:
st.session_state[f"{cat}_enhancement"] = 1.0
enhancement_factor_dict = {
cat: enh_expander.slider(f"{cat} Enhancement",
value=1.,
min_value=enhancement_range[cat][0],
max_value=enhancement_range[cat][1],
step=enhancement_range[cat][2],
key=f"{cat}_enhancement")
for cat in enhancement_categories
}
enh_expander.info("**Try the following**\n\nColor Enhancements = 2.6\n\nContrast Enhancements = 1.1\n\nBrightness Enhancements = 1.1")
# Clustering Model
model_name = st.sidebar.selectbox("machine learning model", model_dict.keys(), help="Machine Learning model to use for clustering pixels and colors together.")
sklearn_info = st.sidebar.empty()
sort_options = sorted(list(sort_func_dict.keys()) + [key + "_r" for key in sort_func_dict.keys() if key!="random"])
sort_func = st.sidebar.selectbox("palette sort function", options=sort_options, index=5)
# Random Number Seed
seed = int(st.sidebar.number_input("random seed", value=42, help="Seed used for all random samplings."))
np.random.seed(seed)
st.sidebar.markdown("---")
# =======
# App
# =======
# provide options to either select an image form the gallery, upload one, or fetch from URL
gallery_tab, upload_tab, url_tab = st.tabs(["Gallery", "Upload", "Image URL"])
with gallery_tab:
options = list(gallery_dict.keys())
file_name = st.selectbox("Select Art",
options=options, index=options.index("Mona Lisa (Leonardo da Vinci)"))
file = gallery_dict[file_name]
if st.session_state.get("file_uploader") is not None:
st.warning("To use the Gallery, remove the uploaded image first.")
if st.session_state.get("image_url") not in ["", None]:
st.warning("To use the Gallery, remove the image URL first.")
img = Image.open(file)
with upload_tab:
file = st.file_uploader("Upload Art", key="file_uploader")
if file is not None:
try:
img = Image.open(file)
except:
st.error("The file you uploaded does not seem to be a valid image. Try uploading a png or jpg file.")
if st.session_state.get("image_url") not in ["", None]:
st.warning("To use the file uploader, remove the image URL first.")
with url_tab:
url_text = st.empty()
# FIXME: the button is a bit buggy, but it's worth fixing this later
# url_reset = st.button("Clear URL", key="url_reset")
# if url_reset and "image_url" in st.session_state:
# st.session_state["image_url"] = ""
# st.write(st.session_state["image_url"])
url = url_text.text_input("Image URL", key="image_url")
if url!="":
try:
response = requests.get(url)
img = Image.open(BytesIO(response.content))
except:
st.error("The URL does not seem to be valid.")
# convert RGBA to RGB if necessary
n_dims = np.array(img).shape[-1]
if n_dims == 4:
background = Image.new("RGB", img.size, (255, 255, 255))
background.paste(img, mask=img.split()[3]) # 3 is the alpha channel
img = background
# apply image enhancements
for cat in enhancement_categories:
img = getattr(ImageEnhance, cat)(img)
img = img.enhance(enhancement_factor_dict[cat])
# show the image
with st.expander("πΌ Artwork", expanded=True):
st.image(img, use_column_width=True)
if click or toggle:
df_rgb = get_df_rgb(img, sample_size)
# (optional for later)
# plot_rgb_3d(df_rgb)
# plot_hsv_3d(df_rgb)
# calculate the RGB palette and cache it to session_state
st.session_state["palette_rgb"] = get_palette(df_rgb, model_name, palette_size, sort_func=sort_func)
if "palette_rgb" in st.session_state:
# store individual colors in session state
store_palette(st.session_state["palette_rgb"])
st.write("---")
# sort the colors based on the selected option
colors = {k: v for k, v in st.session_state.items() if k.startswith("col_")}
sorted_colors = {k: colors[k] for k in sorted(colors, key=lambda k: int(k.split("_")[-1]))}
# find the hex representation for matplotlib and plotly settings
palette_hex = [color for color in sorted_colors.values()][:palette_size]
with st.expander("Adopt this Palette", expanded=False):
st.pyplot(show_palette(palette_hex))
matplotlib_tab, plotly_tab = st.tabs(["matplotlib", "plotly"])
with matplotlib_tab:
display_matplotlib_code(palette_hex)
import matplotlib as mpl
from cycler import cycler
mpl.rcParams["axes.prop_cycle"] = cycler(color=palette_hex)
import matplotlib.pyplot as plt
x = np.arange(5)
y_list = np.random.random((len(palette_hex), 5))+2
df = pd.DataFrame(y_list).T
area_tab, bar_tab = st.tabs(["area chart", "bar chart"])
with area_tab:
fig_area , ax_area = plt.subplots()
df.plot(kind="area", ax=ax_area, backend="matplotlib", )
st.header("Example Area Chart")
st.pyplot(fig_area)
with bar_tab:
fig_bar , ax_bar = plt.subplots()
df.plot(kind="bar", ax=ax_bar, stacked=True, backend="matplotlib", )
st.header("Example Bar Chart")
st.pyplot(fig_bar)
with plotly_tab:
display_plotly_code(palette_hex)
import plotly.io as pio
import plotly.graph_objects as go
pio.templates["sophisticated"] = go.layout.Template(
layout=go.Layout(
colorway=palette_hex
)
)
pio.templates.default = 'sophisticated'
area_tab, bar_tab = st.tabs(["area chart", "bar chart"])
with area_tab:
fig_area = df.plot(kind="area", backend="plotly", )
st.header("Example Area Chart")
st.plotly_chart(fig_area, use_container_width=True)
with bar_tab:
fig_bar = df.plot(kind="bar", backend="plotly", barmode="stack")
st.header("Example Bar Chart")
st.plotly_chart(fig_bar, use_container_width=True)
else:
st.info("π Click on 'Find Palette' ot turn on 'Toggle Update' to see the color palette.")
st.sidebar.success(print_praise())
st.sidebar.write("---\n")
st.sidebar.caption("""You can check out the source code [here](https://github.com/syasini/sophisticated_palette).
The `matplotlib` and `plotly` code snippets have been borrowed from [here](https://matplotlib.org/stable/users/prev_whats_new/dflt_style_changes.html) and [here](https://stackoverflow.com/questions/63011674/plotly-how-to-change-the-default-color-pallete-in-plotly).""")
st.sidebar.write("---\n")