forked from tensorflow/models
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathparameters.py
89 lines (83 loc) · 3.76 KB
/
parameters.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
# Copyright 2016 Google Inc. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Author: aneelakantan (Arvind Neelakantan)
"""
import numpy as np
import tensorflow as tf
class Parameters:
def __init__(self, u):
self.utility = u
self.init_seed_counter = 0
self.word_init = {}
def parameters(self, utility):
params = {}
inits = []
embedding_dims = self.utility.FLAGS.embedding_dims
params["unit"] = tf.Variable(
self.RandomUniformInit([len(utility.operations_set), embedding_dims]))
params["word"] = tf.Variable(
self.RandomUniformInit([utility.FLAGS.vocab_size, embedding_dims]))
params["word_match_feature_column_name"] = tf.Variable(
self.RandomUniformInit([1]))
params["controller"] = tf.Variable(
self.RandomUniformInit([2 * embedding_dims, embedding_dims]))
params["column_controller"] = tf.Variable(
self.RandomUniformInit([2 * embedding_dims, embedding_dims]))
params["column_controller_prev"] = tf.Variable(
self.RandomUniformInit([embedding_dims, embedding_dims]))
params["controller_prev"] = tf.Variable(
self.RandomUniformInit([embedding_dims, embedding_dims]))
global_step = tf.Variable(1, name="global_step")
#weigths of question and history RNN (or LSTM)
key_list = ["question_lstm"]
for key in key_list:
# Weights going from inputs to nodes.
for wgts in ["ix", "fx", "cx", "ox"]:
params[key + "_" + wgts] = tf.Variable(
self.RandomUniformInit([embedding_dims, embedding_dims]))
# Weights going from nodes to nodes.
for wgts in ["im", "fm", "cm", "om"]:
params[key + "_" + wgts] = tf.Variable(
self.RandomUniformInit([embedding_dims, embedding_dims]))
#Biases for the gates and cell
for bias in ["i", "f", "c", "o"]:
if (bias == "f"):
print "forget gate bias"
params[key + "_" + bias] = tf.Variable(
tf.random_uniform([embedding_dims], 1.0, 1.1, self.utility.
tf_data_type[self.utility.FLAGS.data_type]))
else:
params[key + "_" + bias] = tf.Variable(
self.RandomUniformInit([embedding_dims]))
params["history_recurrent"] = tf.Variable(
self.RandomUniformInit([3 * embedding_dims, embedding_dims]))
params["history_recurrent_bias"] = tf.Variable(
self.RandomUniformInit([1, embedding_dims]))
params["break_conditional"] = tf.Variable(
self.RandomUniformInit([2 * embedding_dims, embedding_dims]))
init = tf.global_variables_initializer()
return params, global_step, init
def RandomUniformInit(self, shape):
"""Returns a RandomUniform Tensor between -param_init and param_init."""
param_seed = self.utility.FLAGS.param_seed
self.init_seed_counter += 1
return tf.random_uniform(
shape, -1.0 *
(np.float32(self.utility.FLAGS.param_init)
).astype(self.utility.np_data_type[self.utility.FLAGS.data_type]),
(np.float32(self.utility.FLAGS.param_init)
).astype(self.utility.np_data_type[self.utility.FLAGS.data_type]),
self.utility.tf_data_type[self.utility.FLAGS.data_type],
param_seed + self.init_seed_counter)