forked from tensorflow/models
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy patheval_ptn.py
132 lines (120 loc) · 4.69 KB
/
eval_ptn.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
# Copyright 2017 The TensorFlow Authors All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Contains evaluation plan for the Im2vox model."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import os
import tensorflow as tf
from tensorflow import app
import model_ptn
flags = tf.app.flags
slim = tf.contrib.slim
flags.DEFINE_string('inp_dir',
'',
'Directory path containing the input data (tfrecords).')
flags.DEFINE_string(
'dataset_name', 'shapenet_chair',
'Dataset name that is to be used for training and evaluation.')
flags.DEFINE_integer('z_dim', 512, '')
flags.DEFINE_integer('f_dim', 64, '')
flags.DEFINE_integer('fc_dim', 1024, '')
flags.DEFINE_integer('num_views', 24, 'Num of viewpoints in the input data.')
flags.DEFINE_integer('image_size', 64,
'Input images dimension (pixels) - width & height.')
flags.DEFINE_integer('vox_size', 32, 'Voxel prediction dimension.')
flags.DEFINE_integer('step_size', 24, '')
flags.DEFINE_integer('batch_size', 1, 'Batch size while training.')
flags.DEFINE_float('focal_length', 0.866, '')
flags.DEFINE_float('focal_range', 1.732, '')
flags.DEFINE_string('encoder_name', 'ptn_encoder',
'Name of the encoder network being used.')
flags.DEFINE_string('decoder_name', 'ptn_vox_decoder',
'Name of the decoder network being used.')
flags.DEFINE_string('projector_name', 'ptn_projector',
'Name of the projector network being used.')
# Save options
flags.DEFINE_string('checkpoint_dir', '/tmp/ptn/eval/',
'Directory path for saving trained models and other data.')
flags.DEFINE_string('model_name', 'ptn_proj',
'Name of the model used in naming the TF job. Must be different for each run.')
flags.DEFINE_string('eval_set', 'val', 'Data partition to form evaluation on.')
# Optimization
flags.DEFINE_float('proj_weight', 10, 'Weighting factor for projection loss.')
flags.DEFINE_float('volume_weight', 0, 'Weighting factor for volume loss.')
flags.DEFINE_float('viewpoint_weight', 1,
'Weighting factor for viewpoint loss.')
flags.DEFINE_float('learning_rate', 0.0001, 'Learning rate.')
flags.DEFINE_float('weight_decay', 0.001, '')
flags.DEFINE_float('clip_gradient_norm', 0, '')
# Summary
flags.DEFINE_integer('save_summaries_secs', 15, '')
flags.DEFINE_integer('eval_interval_secs', 60 * 5, '')
# Distribution
flags.DEFINE_string('master', '', '')
FLAGS = flags.FLAGS
def main(argv=()):
del argv # Unused.
eval_dir = os.path.join(FLAGS.checkpoint_dir, FLAGS.model_name, 'train')
log_dir = os.path.join(FLAGS.checkpoint_dir, FLAGS.model_name,
'eval_%s' % FLAGS.eval_set)
if not os.path.exists(eval_dir):
os.makedirs(eval_dir)
if not os.path.exists(log_dir):
os.makedirs(log_dir)
g = tf.Graph()
with g.as_default():
eval_params = FLAGS
eval_params.batch_size = 1
eval_params.step_size = FLAGS.num_views
###########
## model ##
###########
model = model_ptn.model_PTN(eval_params)
##########
## data ##
##########
eval_data = model.get_inputs(
FLAGS.inp_dir,
FLAGS.dataset_name,
eval_params.eval_set,
eval_params.batch_size,
eval_params.image_size,
eval_params.vox_size,
is_training=False)
inputs = model.preprocess_with_all_views(eval_data)
##############
## model_fn ##
##############
model_fn = model.get_model_fn(is_training=False, run_projection=False)
outputs = model_fn(inputs)
#############
## metrics ##
#############
names_to_values, names_to_updates = model.get_metrics(inputs, outputs)
del names_to_values
################
## evaluation ##
################
num_batches = eval_data['num_samples']
slim.evaluation.evaluation_loop(
master=FLAGS.master,
checkpoint_dir=eval_dir,
logdir=log_dir,
num_evals=num_batches,
eval_op=names_to_updates.values(),
eval_interval_secs=FLAGS.eval_interval_secs)
if __name__ == '__main__':
app.run()