-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest.py
131 lines (107 loc) · 3.49 KB
/
test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
import argparse
import json
import os
from pathlib import Path
import torch
from tqdm import tqdm
import hw_tts.model as module_model
from hw_tts.utils import ROOT_PATH
from hw_tts.utils.parse_config import ConfigParser
import numpy as np
import torchaudio
from hw_tts.preproc import MelSpectrogram
DEFAULT_CHECKPOINT_PATH = ROOT_PATH / "default_test_model" / "checkpoint.pth"
def main(config, out_file):
logger = config.get_logger("test")
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model = config.init_obj(config["arch"], module_model)
logger.info(model)
logger.info("Loading checkpoint: {} ...".format(config.resume))
checkpoint = torch.load(config.resume, map_location=device)
state_dict = checkpoint["state_dict"]
if config["n_gpu"] > 1:
model = torch.nn.DataParallel(model)
model.load_state_dict(state_dict)
mel = MelSpectrogram().to(device)
print(device)
model = model.to(device)
model.eval()
data_path = os.listdir(config["data"]["test"])
for i, audio_path in enumerate(data_path):
audio, sr = torchaudio.load(config["data"]["test"] / audio_path)
audio = audio[0:1, :]
mel_ = mel(audio)
generated = model(mel_.to(device))["pred_audio"].squeeze(0)
torchaudio.save(f"{config['data']['test']}/test_{i}.wav", generated, 22050)
if __name__ == "__main__":
args = argparse.ArgumentParser(description="PyTorch Template")
args.add_argument(
"-c",
"--config",
default=None,
type=str,
help="config file path (default: None)",
)
args.add_argument(
"-r",
"--resume",
default=str(DEFAULT_CHECKPOINT_PATH.absolute().resolve()),
type=str,
help="path to latest checkpoint (default: None)",
)
args.add_argument(
"-d",
"--device",
default=None,
type=str,
help="indices of GPUs to enable (default: all)",
)
args.add_argument(
"-o",
"--output",
default="output.json",
type=str,
help="File to write results (.json)",
)
args.add_argument(
"-t",
"--test-data-folder",
default=None,
type=str,
help="Path to dataset",
)
args.add_argument(
"-b",
"--batch-size",
default=1,
type=int,
help="Test dataset batch size",
)
args.add_argument(
"-j",
"--jobs",
default=1,
type=int,
help="Number of workers for test dataloader",
)
args = args.parse_args()
# set GPUs
if args.device is not None:
os.environ["CUDA_VISIBLE_DEVICES"] = args.device
# first, we need to obtain config with model parameters
# we assume it is located with checkpoint in the same folder
model_config = Path(args.resume).parent / "config.json"
with model_config.open() as f:
config = ConfigParser(json.load(f), resume=args.resume)
# update with addition configs from `args.config` if provided
if args.config is not None:
with Path(args.config).open() as f:
config.config.update(json.load(f))
# if `--test-data-folder` was provided, set it as a default test set
if args.test_data_folder is not None:
test_data_folder = Path(args.test_data_folder).absolute().resolve()
assert test_data_folder.exists()
config.config["data"] = {
"test": test_data_folder
}
main(config, args.output)