forked from UoB-HPC/openmp-tutorial
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathjac_solv.c
158 lines (141 loc) · 3.84 KB
/
jac_solv.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
/*
** PROGRAM: jacobi Solver
**
** PURPOSE: This program will explore use of a jacobi iterative
** method to solve a system of linear equations (Ax= b).
**
** Here is the basic idea behind the method. Rewrite
** the matrix A as a Lower Triangular (L), upper triangular
** (U) and diagonal matrix (D)
**
** Ax = (L + D + U)x = b
**
** Carry out the multiplication and rearrange:
**
** Dx = b - (L+U)x --> x = (b-(L+U)x)/D
**
** We can do this iteratively
**
** x_new = (b-(L+U)x_old)/D
**
** USAGE: Run wtihout arguments to use default SIZE.
**
** ./jac_solv
**
** Run with a single argument for the order of the A
** matrix ... for example
**
** ./jac_solv 2500
**
** HISTORY: Written by Tim Mattson, Oct 2015
*/
#include "mm_utils.h" //a library of basic matrix utilities functions
#include <math.h>
#include <omp.h>
#include <stdlib.h>
// and some key constants used in this program
//(such as TYPE)
#define TOLERANCE 0.001
#define DEF_SIZE 1000
#define MAX_ITERS 100000
#define LARGE 1000000.0
//#define DEBUG 1 // output a small subset of intermediate values
//#define VERBOSE 1
int main(int argc, char **argv) {
int Ndim; // A[Ndim][Ndim]
int iters;
double start_time, elapsed_time;
TYPE err, chksum;
TYPE *A, *b, *xnew, *xold;
// set matrix dimensions and allocate memory for matrices
if (argc == 2) {
Ndim = atoi(argv[1]);
} else {
Ndim = DEF_SIZE;
}
printf(" ndim = %d\n", Ndim);
A = (TYPE *)malloc(Ndim * Ndim * sizeof(TYPE));
b = (TYPE *)malloc(Ndim * sizeof(TYPE));
xnew = (TYPE *)malloc(Ndim * sizeof(TYPE));
xold = (TYPE *)malloc(Ndim * sizeof(TYPE));
if (!A || !b || !xold || !xnew) {
printf("\n memory allocation error\n");
exit(-1);
}
// generate our diagonally dominant matrix, A
init_diag_dom_near_identity_matrix(Ndim, A);
#ifdef VERBOSE
mm_print(Ndim, Ndim, A);
#endif
//
// Initialize x and just give b some non-zero random values
//
for (int i = 0; i < Ndim; i++) {
xnew[i] = (TYPE)0.0;
xold[i] = (TYPE)0.0;
b[i] = (TYPE)(rand() % 51) / 100.0;
}
start_time = omp_get_wtime();
//
// jacobi iterative solver
//
TYPE conv = LARGE;
iters = 0;
while ((conv > TOLERANCE) && (iters < MAX_ITERS)) {
iters++;
for (int i = 0; i < Ndim; i++) {
xnew[i] = (TYPE)0.0;
for (int j = 0; j < Ndim; j++) {
if (i != j)
xnew[i] += A[i * Ndim + j] * xold[j];
}
xnew[i] = (b[i] - xnew[i]) / A[i * Ndim + i];
}
//
// test convergence
//
conv = 0.0;
for (int i = 0; i < Ndim; i++) {
TYPE tmp = xnew[i] - xold[i];
conv += tmp * tmp;
}
conv = sqrt((double)conv);
#ifdef DEBUG
printf(" conv = %f \n", (float)conv);
#endif
TYPE* tmp = xold;
xold = xnew;
xnew = tmp;
}
elapsed_time = omp_get_wtime() - start_time;
printf(" Convergence = %g with %d iterations and %f seconds\n", (float)conv,
iters, (float)elapsed_time);
//
// test answer by multiplying my computed value of x by
// the input A matrix and comparing the result with the
// input b vector.
//
err = (TYPE)0.0;
chksum = (TYPE)0.0;
for (int i = 0; i < Ndim; i++) {
xold[i] = (TYPE)0.0;
for (int j = 0; j < Ndim; j++)
xold[i] += A[i * Ndim + j] * xnew[j];
TYPE tmp = xold[i] - b[i];
#ifdef DEBUG
printf(" i=%d, diff = %f, computed b = %f, input b= %f \n", i, (float)tmp,
(float)xold[i], (float)b[i]);
#endif
chksum += xnew[i];
err += tmp * tmp;
}
err = sqrt((double)err);
printf("jacobi solver: err = %f, solution checksum = %f \n", (float)err,
(float)chksum);
if (err > TOLERANCE)
printf("\nWARNING: final solution error > %g\n\n", TOLERANCE);
free(A);
free(b);
free(xold);
free(xnew);
}