forked from UoB-HPC/openmp-tutorial
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmm_utils.c
227 lines (198 loc) · 6.64 KB
/
mm_utils.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
//
// This is a set of simple utility routines and test
// generators for my matrix multiplication test bed.
//
#include "mm_utils.h"
//
// Compare two matrices ... return the sum of the squares
// of the differences of the two input matrices.
//
double errsqr(int Ndim, int Mdim, TYPE *C, TYPE *Cref) {
int i, j;
TYPE tmp, errsqr;
errsqr = (TYPE)0.0;
for (i = 0; i < Ndim; i++) {
for (j = 0; j < Mdim; j++) {
tmp = *(C + i * Mdim + j) - (*(Cref + i * Mdim + j));
errsqr += tmp * tmp;
}
}
return errsqr;
}
//
// Clear (i.e. set to zero) the elements of a matrix
//
void mm_clear(int Ndim, int Mdim, TYPE *C) {
int i, j;
for (i = 0; i < Ndim; i++)
for (j = 0; j < Mdim; j++)
*(C + i * Mdim + j) = (TYPE)0.0;
}
//
// Print the elements of a matrix to standard out
// (might be useful for debugging).
//
void mm_print(int Ndim, int Mdim, TYPE *C) {
int i, j;
for (i = 0; i < Ndim; i++) {
for (j = 0; j < Mdim; j++)
printf("[%04d][%04d] = %g ", i, j, *(C + i * Mdim + j));
printf("\n");
}
}
//
// Print error and timing results to standard out.
//
void output_results(int Ndim, int Mdim, int Pdim, int nerr, double ave_t,
double min_t, double max_t) {
double dN, min_flop, max_flop, ave_flop;
if (nerr > 0)
printf(" %d errors\n", nerr);
printf(" mult: ave=%f, min=%f, max=%f secs \n", ave_t, min_t, max_t);
dN = 2.0 * (double)Ndim * (double)Mdim * (double)Pdim / (1000000.0);
ave_flop = dN / ave_t;
max_flop = dN / min_t;
min_flop = dN / max_t;
printf(" mult: ave=%f, min=%f, max=%f Mflops \n", ave_flop, min_flop,
max_flop);
}
//=========================================================
//
// Test Matrices
//
// For each case, we have a functio to generate the test
// matrices (A and B) and the expected output matrix (C).
// This can be used to test correctness of matrix
// multiplications functions.
//
// The three matrices have dimensions ...
// A(Ndim, Pdim), B(Pdim, Mdim), C(Ndim, Mdim)
//=========================================================
// Case one: Constant matrices (A and B) to generat a constant
// matrix C. This one is easy, but it is not a very strict
// test in that its easy to accidently write an erroneous
// multiplication algorithm that still passes this test
//
// Input and output matrices for constant matrices A and B
void init_const_matrix(int Ndim, int Mdim, int Pdim, TYPE *A, TYPE *B,
TYPE *C) {
int i, j, k;
TYPE Cval;
for (i = 0; i < Ndim; i++)
for (k = 0; k < Pdim; k++)
*(A + i * Pdim + k) = AVAL;
for (k = 0; k < Pdim; k++)
for (j = 0; j < Mdim; j++)
*(B + k * Mdim + j) = BVAL;
Cval = (double)Pdim * (double)AVAL * (double)BVAL;
for (i = 0; i < Ndim; i++)
for (j = 0; j < Mdim; j++)
*(C + i * Mdim + j) = Cval;
}
//=========================================================
// Case two: progression matrices. The A and B matrices
// generate finite series that when combined during the
// multiplication process produces a finite series with
// a mathematically well known, closed for answer.
//
// since the input and results matrices are not simple
// constants, it does a good job of catching errors in
// matrix multiply functions.
//
// Input matrices
// A: elements of rows run 1 to Pdim (scaled by Aval)
// B: elements of cols run from 1 to Pdim (scaled by Bval)
// B: columns additionally scaled by col number (1 to Pdim)
//
void init_progression_matrix(int Ndim, int Mdim, int Pdim, TYPE *A, TYPE *B,
TYPE *C) {
int i, j;
TYPE Cval, Ctmp;
for (i = 0; i < Ndim; i++) {
for (j = 0; j < Pdim; j++)
*(A + i * Pdim + j) = AVAL * (double)(j + 1);
}
for (i = 0; i < Pdim; i++) {
for (j = 0; j < Mdim; j++)
*(B + i * Mdim + j) = (j + 1) * BVAL * (double)(i + 1);
}
// I looked up sum of k squared for k=1 to P in
// Gradshteyn and Ryzhik page 1. I then scaled the C
// matrix by the AVAL and BVAL factors and accounted for
// the column scaling of B (thereby avoiding a constant
// result matrix).
Ctmp = (double)Pdim;
Cval = Ctmp * (Ctmp + (double)1.0) * ((double)2.0 * Ctmp + (double)1.0);
Cval = Cval * AVAL * BVAL / ((double)6.0);
for (i = 0; i < Ndim; i++)
for (j = 0; j < Mdim; j++)
*(C + i * Mdim + j) = Cval * (j + 1);
}
//=========================================================
// Iteratiave solver test matrix generator
//=========================================================
void init_diag_dom_matrix(int Ndim, TYPE *A) {
int i, j;
TYPE sum;
//
// Create a random, diagonally dominant matrix. For
// a diagonally dominant matrix, the diagonal element
// of each row is great than the sum of the other
// elements in the row.
for (i = 0; i < Ndim; i++) {
sum = (TYPE)0.0;
for (j = 0; j < Ndim; j++) {
*(A + i * Ndim + j) = (rand() % 23) / (TYPE)100.0;
sum += *(A + i * Ndim + j);
}
*(A + i * Ndim + i) += sum;
}
}
//=========================================================
// Iteratiave solver test matrix generator. This one is
// freindly to the Jacobi solver
//=========================================================
void init_colmaj_diag_dom_near_identity_matrix(int Ndim, TYPE *A) {
int i, j;
TYPE sum;
//
// Create a random, diagonally dominant matrix. For
// a diagonally dominant matrix, the diagonal element
// of each row is great than the sum of the other
// elements in the row. Then scale the matrix so the
// result is near the identiy matrix.
for (i = 0; i < Ndim; i++) {
sum = (TYPE)0.0;
for (j = 0; j < Ndim; j++) {
*(A + j * Ndim + i) = (rand() % 23) / (TYPE)1000.0;
sum += *(A + j * Ndim + i);
}
*(A + i * Ndim + i) += sum;
// scale the row so the final matrix is almost an identity matrix;wq
for (j = 0; j < Ndim; j++)
*(A + j * Ndim + i) /= sum;
}
}
//===========================================================
void init_diag_dom_near_identity_matrix(int Ndim, TYPE *A) {
int i, j;
TYPE sum;
//
// Create a random, diagonally dominant matrix. For
// a diagonally dominant matrix, the diagonal element
// of each row is great than the sum of the other
// elements in the row. Then scale the matrix so the
// result is near the identiy matrix.
for (i = 0; i < Ndim; i++) {
sum = (TYPE)0.0;
for (j = 0; j < Ndim; j++) {
*(A + i * Ndim + j) = (rand() % 23) / (TYPE)1000.0;
sum += *(A + i * Ndim + j);
}
*(A + i * Ndim + i) += sum;
// scale the row so the final matrix is almost an identity matrix;wq
for (j = 0; j < Ndim; j++)
*(A + i * Ndim + j) /= sum;
}
}
//===========================================================