forked from AIRI-Institute/AriGraph
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpipeline_smartrag.py
197 lines (153 loc) · 7.38 KB
/
pipeline_smartrag.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
import re
import json
import numpy as np
from time import time
from utils.contriever import Retriever
from agents.parent_agent import GPTagent
from utils.envs_cfg import ENV_NAMES, FIRST_OBS, MAIN_GOALS
from utils.win_cond import win_cond_clean_place, win_cond_clean_take
from utils.textworld_adapter import TextWorldWrapper, graph_from_facts
from prompts.system_prompts import system_plan_agent, system_action_agent_sub_expl
from utils.utils import Logger, observation_processing, simulate_environment_actions, \
action_processing, action_deprocessing
# Changeable part of pipeline
log_file = "test_new_pipe_smartrag"
# env_name can be picked from:
# ["hunt", "hunt_hard", "cook", "cook_hard", "cook_rl_baseline", "clean"]
# for test another envs edit utils.envs_cfg
env_name = "clean"
model = "gpt-4-0125-preview"
retriever_device = "cpu"
api_key = "insert your key here"
n_prev, n_retrieve = 5, 5
max_steps, n_attempts = 5, 1
# End of changeable part of pipeline
main_goal = MAIN_GOALS[env_name]
log = Logger(log_file)
env = TextWorldWrapper(ENV_NAMES[env_name])
retriever = Retriever(retriever_device)
agent_plan = GPTagent(model = model, system_prompt=system_plan_agent, api_key = api_key)
agent_action = GPTagent(model = model, system_prompt=system_action_agent_sub_expl, api_key = api_key)
agent_score = GPTagent(model = model, system_prompt = "You are a helpful assistant", api_key = api_key)
def run():
total_amount, total_time = 0, 0
for attempt in range(n_attempts):
log("\n\n\n\n\n\n\nAttempt: " + str(attempt + 1))
log("=" * 70)
observations, history = [], []
observation, info = env.reset()
action = "start"
plan0 = f'''{{
"main_goal": {main_goal},
"plan_steps": [
{{
"sub_goal_1": "Start the game",
"reason": "You should start the game"
}},
],
}}'''
attempt_amount, attempt_time = 0, 0
done = False
reward, step_reward = 0, 0
rewards = []
for step in range(max_steps):
start = time()
log("Step: " + str(step + 1))
observation = observation.split("$$$")[-1]
observation = observation_processing(observation)
if step == 0:
observation += FIRST_OBS[env_name]
observation = "Game step #" + str(step + 1) + "\n" + observation
inventory = env.get_inventory()
if done:
log("Game itog: " + observation)
log("\n" * 10)
break
log("Observation: " + observation)
observation += f"\nInventory: {inventory}"
observation_with_plan = observation + f"\nPlan: {plan0}"
current_emb = retriever.embed([observation_with_plan])[0].cpu().detach().numpy()
relevant_observations = smart_rag(current_emb, step, observations, n = n_retrieve)
relevant_observations += [f"Observations: {observations[-i][0]}\nAction taken: {observations[-i][4]}" for i in range(min(n_prev, len(observations)))]
relevant_observations = list(set(relevant_observations))
log("RELEVANT OBSERVATIONS: " + str(relevant_observations))
valid_actions = [action_processing(action) for action in env.get_valid_actions()] + env.expand_action_space() if "cook" in env_name else env.get_valid_actions()
plan0 = planning(relevant_observations, observation, plan0)
action = choose_action(relevant_observations, observation, plan0, valid_actions)
score = get_score(observation, plan0)
observations.append((observation, step, score, current_emb, action))
observation, step_reward, done, info = process_action_get_reward(action, env, info, env_name)
reward += step_reward
rewards.append(reward)
step_amount = agent_plan.total_amount + agent_action.total_amount + agent_score.total_amount - total_amount
attempt_amount += step_amount
total_amount += step_amount
log(f"\nTotal amount: {round(total_amount, 2)}$, attempt amount: {round(attempt_amount, 2)}$, step amount: {round(step_amount, 2)}$")
step_time = time() - start
attempt_time += step_time
total_time += step_time
log(f"Total time: {round(total_time, 2)} sec, attempt time: {round(attempt_time, 2)} sec, step time: {round(step_time, 2)} sec")
log("=" * 70)
log(f"\n\nTOTAL REWARDS: {rewards}\n\n")
def process_action_get_reward(action, env, info, env_name):
G_true = graph_from_facts(info)
full_graph = G_true.edges(data = True)
step_reward = 0
observation, reward_, done, info = env.step(action)
step_reward += reward_
G_true_new = graph_from_facts(info)
full_graph_new = G_true_new.edges(data = True)
step_reward = simulate_environment_actions(full_graph, full_graph_new, win_cond_clean_take, win_cond_clean_place) \
if env_name == "clean" else step_reward
return observation, step_reward, done, info
def choose_action(observations, observation, plan0, valid_actions):
prompt = f'''\n1. Main goal: {main_goal}
\n2. Most relevant previous observations: {observations}
\n3. Your current observation: {observation}
\n4. Your current plan: {plan0}
Possible actions in current situation: {valid_actions}'''
action0, cost_action = agent_action.generate(prompt, jsn=True, t=1)
log("Action: " + action0)
try:
action_json = json.loads(action0)
action = action_json["action_to_take"]
except:
log("!!!INCORRECT ACTION CHOICE!!!")
action = "look"
action = action_deprocessing(action) if "cook" in env_name else action
return action
def planning(observations, observation, plan0):
prompt = f'''\n1. Main goal: {main_goal}
\n2. Most relevant previous observations: {observations}
\n3. Your current observation: {observation}
\n4. Your previous plan: {plan0}'''
plan0, cost_plan = agent_plan.generate(prompt, jsn=True, t=0.2)
log("Plan0: " + plan0)
return plan0
def smart_rag(current_emb, step, observations, n = 3):
if not observations:
return []
time_scores, importance_scores, relative_scores = [], [], []
for past_obs in observations:
time_scores.append(0.99 ** (step - past_obs[1]))
importance_scores.append(past_obs[2])
relative_scores.append(np.dot(current_emb, past_obs[3]) / (np.linalg.norm(past_obs[3]) * np.linalg.norm(current_emb)))
def minmax(arr):
return (np.array(arr) - np.min(arr)) / (np.max(arr) - np.min(arr) + 1e-9)
best_idx = np.argsort(minmax(time_scores) + minmax(importance_scores) + minmax(relative_scores))[-n:]
return [f"Observations: {observations[i][0]}\nAction taken: {observations[i][4]}" for i in best_idx]
def get_score(observation, plan0):
prompt = f"""On the scale of 1 to 10, where 1 is purely mundane
(e.g., go to known location) and 10 is
extremely poignant (e.g., finding something significantly related to plan), rate the likely poignancy of the
following piece of memory.
Memory: {observation}
Current plan: {plan0}
Your answer must contain only integer in range [1; 10] and no more.
Rating: """
score, cost = agent_score.generate(prompt, t = 0.4)
score = int(re.findall(r"\d+", score)[0])
log("Score: " + str(score))
return score
if __name__ == "__main__":
run()