From 0fb1cb945c3f6ae1f2966103730a4cbfb2ee995d Mon Sep 17 00:00:00 2001 From: Dahua Lin Date: Sun, 2 Aug 2015 17:48:42 +0800 Subject: [PATCH] enforce consistent naming for Epanechnikov & Exponential --- src/univariate/continuous/epanechnikov.jl | 72 +++++++++++++---------- src/univariate/continuous/exponential.jl | 28 ++++----- 2 files changed, 56 insertions(+), 44 deletions(-) diff --git a/src/univariate/continuous/epanechnikov.jl b/src/univariate/continuous/epanechnikov.jl index c56302563..20350560d 100644 --- a/src/univariate/continuous/epanechnikov.jl +++ b/src/univariate/continuous/epanechnikov.jl @@ -1,51 +1,63 @@ immutable Epanechnikov <: ContinuousUnivariateDistribution - location::Float64 - scale::Float64 - function Epanechnikov(l::Real, s::Real) - s > zero(s) || error("scale must be positive") - @compat new(Float64(l), Float64(s)) + μ::Float64 + σ::Float64 + function Epanechnikov(μ::Real, σ::Real) + σ > zero(σ) || + throw(ArgumentError("Epanechnikov: σ must be positive.")) + @compat new(Float64(μ), Float64(σ)) end -end -Epanechnikov(location::Real) = Epanechnikov(location, 1.0) -Epanechnikov() = Epanechnikov(0.0, 1.0) + Epanechnikov(μ::Real) = @compat new(Float64(μ), 1.0) + Epanechnikov() = new(0.0, 1.0) +end -@distr_support Epanechnikov d.location-d.scale d.location+d.scale +@distr_support Epanechnikov d.μ - d.σ d.μ + d.σ ## Parameters -params(d::Epanechnikov) = (d.location, d.scale) + +location(d::Epanechnikov) = d.μ +scale(d::Epanechnikov) = d.σ +params(d::Epanechnikov) = (d.μ, d.σ) ## Properties -mean(d::Epanechnikov) = d.location -median(d::Epanechnikov) = d.location -mode(d::Epanechnikov) = d.location +mean(d::Epanechnikov) = d.μ +median(d::Epanechnikov) = d.μ +mode(d::Epanechnikov) = d.μ -var(d::Epanechnikov) = d.scale*d.scale/5 +var(d::Epanechnikov) = d.σ^2 / 5 skewness(d::Epanechnikov) = 0.0 -kurtosis(d::Epanechnikov) = 3/35-3 +kurtosis(d::Epanechnikov) = -2.914285714285714 # 3/35-3 ## Functions -function pdf(d::Epanechnikov, x::Real) - u = abs(x - d.location)/d.scale - u >= 1 ? 0.0 : 0.75*(1-u*u)/d.scale +function pdf(d::Epanechnikov, x::Float64) + u = abs(x - d.μ) / d.σ + u >= 1 ? 0.0 : 0.75 * (1 - u^2) / d.σ end -function cdf(d::Epanechnikov, x::Real) - u = (x - d.location)/d.scale - u <= -1 ? 0.0 : u >= 1 ? 1.0 : 0.5+u*(0.75-0.25*u*u) + +function cdf(d::Epanechnikov, x::Float64) + u = (x - d.μ) / d.σ + u <= -1 ? 0.0 : + u >= 1 ? 1.0 : + 0.5 + u * (0.75 - 0.25 * u^2) end -function ccdf(d::Epanechnikov, x::Real) - u = (d.location - x)/d.scale - u <= -1 ? 1.0 : u >= 1 ? 0.0 : 0.5+u*(0.75-0.25*u*u) + +function ccdf(d::Epanechnikov, x::Float64) + u = (d.μ - x) / d.σ + u <= -1 ? 1.0 : + u >= 1 ? 0.0 : + 0.5 + u * (0.75 - 0.25 * u^2) end @quantile_newton Epanechnikov -function mgf(d::Epanechnikov, t::Real) - a = d.scale*t - a == 0 ? one(a) : 3.0*exp(d.location*t)*(cosh(a)-sinh(a)/a)/(a*a) +function mgf(d::Epanechnikov, t::Float64) + a = d.σ * t + a == 0 ? 1.0 : + 3.0 * exp(d.μ * t) * (cosh(a) - sinh(a) / a) / a^2 end -function cf(d::Epanechnikov, t::Real) - a = d.scale*t - a == 0 ? complex(one(a)) : -3.0*exp(im*d.location*t)*(cos(a)-sin(a)/a)/(a*a) +function cf(d::Epanechnikov, t::Float64) + a = d.σ * t + a == 0 ? 1.0+0.0im : + -3.0 * exp(im * d.μ * t) * (cos(a) - sin(a) / a) / a^2 end diff --git a/src/univariate/continuous/exponential.jl b/src/univariate/continuous/exponential.jl index 31ac92f27..836e403d1 100644 --- a/src/univariate/continuous/exponential.jl +++ b/src/univariate/continuous/exponential.jl @@ -1,11 +1,11 @@ immutable Exponential <: ContinuousUnivariateDistribution - β::Float64 # note: scale not rate + θ::Float64 # note: scale not rate - function Exponential(β::Real) - β > zero(β) || error("scale must be positive") - @compat new(Float64(β)) + function Exponential(θ::Real) + θ > zero(θ) || + throw(ArgumentError("Exponential: scale must be positive")) + @compat new(Float64(θ)) end - Exponential() = new(1.0) end @@ -14,33 +14,33 @@ end #### Parameters -scale(d::Exponential) = d.β -rate(d::Exponential) = 1.0 / d.β +scale(d::Exponential) = d.θ +rate(d::Exponential) = 1.0 / d.θ -params(d::Exponential) = (d.β,) +params(d::Exponential) = (d.θ,) #### Statistics -mean(d::Exponential) = scale(d) +mean(d::Exponential) = d.θ -median(d::Exponential) = logtwo * scale(d) +median(d::Exponential) = logtwo * d.θ mode(d::Exponential) = 0.0 -var(d::Exponential) = scale(d)^2 +var(d::Exponential) = d.θ^2 skewness(d::Exponential) = 2.0 kurtosis(d::Exponential) = 6.0 -entropy(d::Exponential) = 1.0 + log(scale(d)) +entropy(d::Exponential) = 1.0 + log(d.θ) #### Evaluation -zval(d::Exponential, x::Float64) = x / d.β -xval(d::Exponential, z::Float64) = z * d.β +zval(d::Exponential, x::Float64) = x / d.θ +xval(d::Exponential, z::Float64) = z * d.θ pdf(d::Exponential, x::Float64) = (λ = rate(d); x < 0.0 ? 0.0 : λ * exp(-λ * x)) logpdf(d::Exponential, x::Float64) = (λ = rate(d); x < 0.0 ? -Inf : log(λ) - λ * x)