forked from TheAlgorithms/C-Sharp
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathAATree.cs
393 lines (348 loc) · 12.6 KB
/
AATree.cs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
using System;
using System.Collections.Generic;
namespace DataStructures.AATree
{
/// <summary>
/// A simple self-balancing binary search tree.
/// </summary>
/// <remarks>
/// AA Trees are a form of self-balancing binary search tree named after their inventor
/// Arne Anderson. AA Trees are designed to be simple to understand and implement.
/// This is accomplished by limiting how nodes can be added to the tree.
/// This simplifies rebalancing operations.
/// More information: https://en.wikipedia.org/wiki/AA_tree .
/// </remarks>
/// <typeparam name="TKey">The type of key for the AA tree.</typeparam>
public class AaTree<TKey>
{
/// <summary>
/// The comparer function to use to compare the keys.
/// </summary>
private readonly Comparer<TKey> comparer;
/// <summary>
/// Initializes a new instance of the <see cref="AaTree{TKey}" /> class.
/// </summary>
public AaTree()
: this(Comparer<TKey>.Default)
{
}
/// <summary>
/// Initializes a new instance of the <see cref="AaTree{TKey}" /> class with a custom comparer.
/// </summary>
/// <param name="customComparer">The custom comparer to use to compare keys.</param>
public AaTree(Comparer<TKey> customComparer) => comparer = customComparer;
/// <summary>
/// Gets the root of the tree.
/// </summary>
public AaTreeNode<TKey>? Root { get; private set; }
/// <summary>
/// Gets the number of elements in the tree.
/// </summary>
public int Count { get; private set; }
/// <summary>
/// Add a single element to the tree.
/// </summary>
/// <param name="key">The element to add to the tree.</param>
public void Add(TKey key)
{
Root = Add(key, Root);
Count++;
}
/// <summary>
/// Add multiple elements to the tree.
/// </summary>
/// <param name="keys">The elements to add to the tree.</param>
public void AddRange(IEnumerable<TKey> keys)
{
foreach (var key in keys)
{
Root = Add(key, Root);
Count++;
}
}
/// <summary>
/// Remove a single element from the tree.
/// </summary>
/// <param name="key">Element to remove.</param>
public void Remove(TKey key)
{
if (!Contains(key, Root))
{
throw new InvalidOperationException($"{nameof(key)} is not in the tree");
}
Root = Remove(key, Root);
Count--;
}
/// <summary>
/// Checks if the specified element is in the tree.
/// </summary>
/// <param name="key">The element to look for.</param>
/// <returns>true if the element is in the tree, false otherwise.</returns>
public bool Contains(TKey key) => Contains(key, Root);
/// <summary>
/// Gets the largest element in the tree. (ie. the element in the right most node).
/// </summary>
/// <returns>The largest element in the tree according to the stored comparer.</returns>
/// <exception cref="InvalidOperationException">Thrown if the tree is empty.</exception>
public TKey GetMax()
{
if (Root is null)
{
throw new InvalidOperationException("Tree is empty!");
}
return GetMax(Root).Key;
}
/// <summary>
/// Gets the smallest element in the tree. (ie. the element in the left most node).
/// </summary>
/// <returns>The smallest element in the tree according to the stored comparer.</returns>
/// <throws>InvalidOperationException if the tree is empty.</throws>
public TKey GetMin()
{
if (Root is null)
{
throw new InvalidOperationException("Tree is empty!");
}
return GetMin(Root).Key;
}
/// <summary>
/// Gets all the elements in the tree in in-order order.
/// </summary>
/// <returns>Sequence of elements in in-order order.</returns>
public IEnumerable<TKey> GetKeysInOrder()
{
var result = new List<TKey>();
InOrderWalk(Root);
return result;
void InOrderWalk(AaTreeNode<TKey>? node)
{
if (node is null)
{
return;
}
InOrderWalk(node.Left);
result.Add(node.Key);
InOrderWalk(node.Right);
}
}
/// <summary>
/// Gets all the elements in the tree in pre-order order.
/// </summary>
/// <returns>Sequence of elements in pre-order order.</returns>
public IEnumerable<TKey> GetKeysPreOrder()
{
var result = new List<TKey>();
PreOrderWalk(Root);
return result;
void PreOrderWalk(AaTreeNode<TKey>? node)
{
if (node is null)
{
return;
}
result.Add(node.Key);
PreOrderWalk(node.Left);
PreOrderWalk(node.Right);
}
}
/// <summary>
/// Gets all the elements in the tree in post-order order.
/// </summary>
/// <returns>Sequence of elements in post-order order.</returns>
public IEnumerable<TKey> GetKeysPostOrder()
{
var result = new List<TKey>();
PostOrderWalk(Root);
return result;
void PostOrderWalk(AaTreeNode<TKey>? node)
{
if (node is null)
{
return;
}
PostOrderWalk(node.Left);
PostOrderWalk(node.Right);
result.Add(node.Key);
}
}
/// <summary>
/// Recursive function to add an element to the tree.
/// </summary>
/// <param name="key">The element to add.</param>
/// <param name="node">The node to search for a empty spot.</param>
/// <returns>The node with the added element.</returns>
/// <exception cref="ArgumentException">Thrown if key is already in the tree.</exception>
private AaTreeNode<TKey> Add(TKey key, AaTreeNode<TKey>? node)
{
if (node is null)
{
return new AaTreeNode<TKey>(key, 1);
}
if (comparer.Compare(key, node.Key) < 0)
{
node.Left = Add(key, node.Left);
}
else if (comparer.Compare(key, node.Key) > 0)
{
node.Right = Add(key, node.Right);
}
else
{
throw new ArgumentException($"Key \"{key}\" already in tree!", nameof(key));
}
return Split(Skew(node)) !;
}
/// <summary>
/// Recursive function to remove an element from the tree.
/// </summary>
/// <param name="key">The element to remove.</param>
/// <param name="node">The node to search from.</param>
/// <returns>The node with the specified element removed.</returns>
private AaTreeNode<TKey>? Remove(TKey key, AaTreeNode<TKey>? node)
{
if (node is null)
{
return null;
}
if (comparer.Compare(key, node.Key) < 0)
{
node.Left = Remove(key, node.Left);
}
else if (comparer.Compare(key, node.Key) > 0)
{
node.Right = Remove(key, node.Right);
}
else
{
if (node.Left is null && node.Right is null)
{
return null;
}
if (node.Left is null)
{
var successor = GetMin(node.Right!);
node.Right = Remove(successor.Key, node.Right);
node.Key = successor.Key;
}
else
{
var predecessor = GetMax(node.Left);
node.Left = Remove(predecessor.Key, node.Left);
node.Key = predecessor.Key;
}
}
node = DecreaseLevel(node);
node = Skew(node);
node!.Right = Skew(node.Right);
if (node.Right is not null)
{
node.Right.Right = Skew(node.Right.Right);
}
node = Split(node);
node!.Right = Split(node.Right);
return node;
}
/// <summary>
/// Recursive function to check if the element exists in the tree.
/// </summary>
/// <param name="key">The element to check for.</param>
/// <param name="node">The node to search from.</param>
/// <returns>true if the element exists in the tree, false otherwise.</returns>
private bool Contains(TKey key, AaTreeNode<TKey>? node) =>
node is { }
&& comparer.Compare(key, node.Key) is { } v
&& v switch
{
{ } when v > 0 => Contains(key, node.Right),
{ } when v < 0 => Contains(key, node.Left),
_ => true,
};
/// <summary>
/// Recursive to find the maximum/right-most element.
/// </summary>
/// <param name="node">The node to traverse from.</param>
/// <returns>The node with the maximum/right-most element.</returns>
private AaTreeNode<TKey> GetMax(AaTreeNode<TKey> node)
{
while (true)
{
if (node.Right is null)
{
return node;
}
node = node.Right;
}
}
/// <summary>
/// Recursive to find the minimum/left-most element.
/// </summary>
/// <param name="node">The node to traverse from.</param>
/// <returns>The node with the minimum/left-most element.</returns>
private AaTreeNode<TKey> GetMin(AaTreeNode<TKey> node)
{
while (true)
{
if (node.Left is null)
{
return node;
}
node = node.Left;
}
}
/// <summary>
/// Remove right-horizontal links and replaces them with left-horizontal links.
/// Accomplishes this by performing a right rotation.
/// </summary>
/// <param name="node">The node to rebalance from.</param>
/// <returns>The rebalanced node.</returns>
private AaTreeNode<TKey>? Skew(AaTreeNode<TKey>? node)
{
if (node?.Left is null || node.Left.Level != node.Level)
{
return node;
}
var left = node.Left;
node.Left = left.Right;
left.Right = node;
return left;
}
/// <summary>
/// Reduces the number of right-horizontal links.
/// Accomplishes this by performing a left rotation, and incrementing level.
/// </summary>
/// <param name="node">The node to rebalance from.</param>
/// <returns>The rebalanced node.</returns>
private AaTreeNode<TKey>? Split(AaTreeNode<TKey>? node)
{
if (node?.Right?.Right is null || node.Level != node.Right.Right.Level)
{
return node;
}
var right = node.Right;
node.Right = right.Left;
right.Left = node;
right.Level++;
return right;
}
/// <summary>
/// Decreases the level of node if necessary.
/// </summary>
/// <param name="node">The node to decrease level from.</param>
/// <returns>The node with modified level.</returns>
private AaTreeNode<TKey> DecreaseLevel(AaTreeNode<TKey> node)
{
var newLevel = Math.Min(GetLevel(node.Left), GetLevel(node.Right)) + 1;
if (newLevel >= node.Level)
{
return node;
}
node.Level = newLevel;
if (node.Right is { } && newLevel < node.Right.Level)
{
node.Right.Level = newLevel;
}
return node;
static int GetLevel(AaTreeNode<TKey>? x) => x?.Level ?? 0;
}
}
}