-
Notifications
You must be signed in to change notification settings - Fork 0
/
train_u_nets.py
427 lines (329 loc) · 17.1 KB
/
train_u_nets.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
import argparse
import models
import data
import torch
import time
from pathlib import Path
import tqdm
import json
import utils
import numpy as np
import random
import os
import copy
import configargparse
import shutil
import matplotlib.pyplot as plt
from torch.utils.tensorboard import SummaryWriter
import model_utls
from ddsp import losses, spectral_ops
tqdm.monitor_interval = 0
def train(args, network, device, train_sampler, optimizer, ss_weights_dict):
loss_container = utils.AverageMeter()
network.train()
pbar = tqdm.tqdm(train_sampler, disable=args.quiet)
for data in pbar:
pbar.set_description("Training batch")
x = data[0] # mix
f0 = data[1] # f0 [batch_size, n_frames, n_sources]
targets = data[2]
batch_size, n_frames, n_sources = f0.shape
# randomly choose the target source
probabilities = torch.ones((n_sources,))
source_indices = torch.multinomial(probabilities, num_samples=batch_size, replacement=True)
f0 = f0[torch.arange(batch_size), :, source_indices].unsqueeze(2)
targets = targets[torch.arange(batch_size), :, source_indices]
overlap = 1 - args.nhop/args.nfft
target_mags = spectral_ops.compute_mag(targets, args.nfft, overlap, pad_end=True, center=True)
x, f0, target_mags = x.to(device), f0.to(device), target_mags.to(device)
optimizer.zero_grad()
y_hat = network((x, f0))[:, 0, :, :]
loss_fn = torch.nn.L1Loss()
loss = loss_fn(y_hat, target_mags)
loss.backward()
optimizer.step()
loss_container.update(loss.item(), f0.size(0))
return loss_container.avg
def valid(args, network, device, valid_sampler):
loss_container = utils.AverageMeter()
network.eval()
with torch.no_grad():
for data in valid_sampler:
x = data[0] # audio
f0 = data[1] # f0
targets = data[2]
batch_size, n_frames, n_sources = f0.shape
# choose the target source
source_indices = [s for s in range(n_sources)] * batch_size
source_indices = source_indices[:batch_size]
f0 = f0[torch.arange(batch_size), :, source_indices].unsqueeze(2)
targets = targets[torch.arange(batch_size), :, source_indices]
overlap = 1 - args.nhop/args.nfft
target_mags = spectral_ops.compute_mag(targets, args.nfft, overlap, pad_end=True, center=True)
x, f0, target_mags = x.to(device), f0.to(device), target_mags.to(device)
y_hat = network((x, f0))[:, 0, :, :]
loss_fn = torch.nn.L1Loss()
loss = loss_fn(y_hat, target_mags)
loss_container.update(loss.item(), f0.size(0))
return loss_container.avg
def get_statistics(args, dataset):
# dataset is an instance of a torch.utils.data.Dataset class
scaler = sklearn.preprocessing.StandardScaler() # tool to compute mean and variance of data
# define operation that computes magnitude spectrograms
spec = torch.nn.Sequential(
model.STFT(n_fft=args.nfft, n_hop=args.nhop),
model.Spectrogram(mono=True)
)
# return a deep copy of dataset:
# constructs a new compound object and recursively inserts copies of the objects found in the original
dataset_scaler = copy.deepcopy(dataset)
dataset_scaler.samples_per_track = 1
dataset_scaler.augmentations = None # no scaling of sources before mixing
dataset_scaler.random_chunks = False # no random chunking of tracks
dataset_scaler.random_track_mix = False # no random accompaniments for vocals
dataset_scaler.random_interferer_mix = False
dataset_scaler.seq_duration = None # if None, the original whole track from musdb is loaded
# make a progress bar:
# returns an iterator which acts exactly like the original iterable,
# but prints a dynamically updating progressbar every time a value is requested.
pbar = tqdm.tqdm(range(len(dataset_scaler)), disable=args.quiet)
for ind in pbar:
out = dataset_scaler[ind] # x is mix and y is target source in time domain, z is text and ignored here
x = out[0]
y = out[1]
pbar.set_description("Compute dataset statistics")
X = spec(x[None, ...]) # X is mono magnitude spectrogram, ... means as many ':' as needed
# X is spectrogram of one full track
# at this point, X has shape (nb_frames, nb_samples, nb_channels, nb_bins) = (N, 1, 1, F)
# nb_frames: time steps, nb_bins: frequency bands, nb_samples: batch size
# online computation of mean and std on X for later scaling
# after squeezing, X has shape (N, F)
scaler.partial_fit(np.squeeze(X)) # np.squeeze: remove single-dimensional entries from the shape of an array
# set inital input scaler values
# scale_ and mean_ have shape (nb_bins,), standard deviation and mean are computed on each frequency band separately
# if std of a frequency bin is smaller than m = 1e-4 * (max std of all freq. bins), set it to m
std = np.maximum( # maximum compares two arrays element wise and returns the maximum element wise
scaler.scale_,
1e-4*np.max(scaler.scale_) # np.max = np.amax, it returns the max element of one array
)
return scaler.mean_, std
def main():
parser = configargparse.ArgParser()
parser.add('-c', '--my-config', required=True, is_config_file=True, help='config file path')
#parser = argparse.ArgumentParser(description='Training')
# experiment tag which will determine output folder in trained models, tensorboard name, etc.
parser.add_argument('--tag', type=str, default='test')
# allow to pass a comment about the experiment
parser.add_argument('--comment', type=str, help='comment about the experiment')
args, _ = parser.parse_known_args()
# Dataset paramaters
parser.add_argument('--dataset', type=str, default="musdb",
help='Name of the dataset.')
parser.add_argument('--one-example', action='store_true', default=False,
help='overfit to one example of the training set')
parser.add_argument('--one-batch', action='store_true', default=False,
help='overfit to one batch of the training set')
parser.add_argument('--parallel', action='store_true', default=False,
help='if True, correlated sources are generated in parallel in synth. dataset')
parser.add_argument('--one-song', action='store_true', default=False,
help='if True, only one song is used in BC dataset for training and validation')
#parser.add_argument('--root', type=str, help='root path of dataset')
parser.add_argument('--output', type=str, default="trained_models/{}/".format(args.tag),
help='provide output path base folder name')
parser.add_argument('--wst-model', type=str, help='Path to checkpoint folder for warmstart')
# Training Parameters
parser.add_argument('--epochs', type=int, default=1000)
parser.add_argument('--batch-size', type=int, default=16)
parser.add_argument('--lr', type=float, default=0.001,
help='learning rate, defaults to 1e-3')
parser.add_argument('--patience', type=int, default=140,
help='maximum number of epochs to train (default: 140)')
parser.add_argument('--lr-decay-patience', type=int, default=80,
help='lr decay patience for plateau scheduler')
parser.add_argument('--lr-decay-gamma', type=float, default=0.3,
help='gamma of learning rate scheduler decay')
parser.add_argument('--weight-decay', type=float, default=0.00001,
help='weight decay')
parser.add_argument('--seed', type=int, default=42, metavar='S',
help='random seed (default: 42)')
parser.add_argument('--supervised', action='store_true', default=False)
parser.add_argument('--reconstruction-loss-weight', type=float, default=1.0)
parser.add_argument('--loss-nfft', type=int, action='store', nargs='*', default=[2048, 1024, 512, 256, 128, 64])
parser.add_argument('--loss-mag-weight', type=float, default=1.0)
parser.add_argument('--loss-logmag-weight', type=float, default=1.0)
parser.add_argument('--loss-logmel-weight', type=float, default=0.0)
parser.add_argument('--loss-delta-freq-weight', type=float, default=0.0)
parser.add_argument('--loss-delta-time-weight', type=float, default=0.0)
parser.add_argument('--loss-lsf-weight', type=float, default=0.0)
parser.add_argument('--ss-loss-weight', type=float, default=0.0)
parser.add_argument('--harmonic-amp-loss-weight', type=float, default=0.0)
parser.add_argument('--f0-hz-loss-weight', type=float, default=0.0)
parser.add_argument('--harmonics-roll-off-loss-weight', type=float, default=0.0)
parser.add_argument('--lsf-loss-weight', type=float, default=0.0)
parser.add_argument('--noise-gain-loss-weight', type=float, default=0.0)
parser.add_argument('--noise-mags-loss-weight', type=float, default=0.0)
# Model Parameters
parser.add_argument('--nfft', type=int, default=512,
help='STFT fft size and window size')
parser.add_argument('--nhop', type=int, default=256,
help='STFT hop size')
parser.add_argument('--filter-order', type=int, default=10,
help='filter order of vocal tract all-pole filter')
parser.add_argument('--noise-filter-mags', type=int, default=40,
help='number of frequency bands in noise filter')
parser.add_argument('--encoder', type=str, default='SeparationEncoderSimple')
parser.add_argument('--encoder-hidden-size', type=int, default=256)
parser.add_argument('--embedding-size', type=int, default=128)
parser.add_argument('--decoder-hidden-size', type=int, default=512)
parser.add_argument('--decoder-output-size', type=int, default=512)
parser.add_argument('--n-sources', type=int, default=2)
parser.add_argument('--estimate-lsf', action='store_true', default=False)
parser.add_argument('--estimate-noise-mags', action='store_true', default=False)
parser.add_argument('--unidirectional', action='store_true', default=False)
parser.add_argument('--voiced-unvoiced-same-noise', action='store_true', default=False)
parser.add_argument('--nb-workers', type=int, default=4,
help='Number of workers for dataloader.')
# name of the model class in model.py that should be used
parser.add_argument('--original-cu-net', action='store_true', default=False)
parser.add_argument('--architecture', type=str)
parser.add_argument('--nb-filter-magnitudes', type=int, default=65)
parser.add_argument('--estimate-f0', action='store_true', default=False)
parser.add_argument('--supervised-f0', action='store_true', default=False)
parser.add_argument('--switch-off-noise', action='store_true', default=False)
parser.add_argument('--f-ref-source-spec', type=float, default=200.)
parser.add_argument('--harmonic-roll-off', type=float, default=12.)
parser.add_argument('--source-spectrum', type=str, default='flat')
# Misc Parameters
parser.add_argument('--quiet', action='store_true', default=False,
help='less verbose during training')
parser.add_argument('--no-cuda', action='store_true', default=False,
help='disables CUDA training')
args, _ = parser.parse_known_args()
use_cuda = not args.no_cuda and torch.cuda.is_available()
print("Using GPU:", use_cuda)
#print("Using Torchaudio: ", utils._torchaudio_available())
dataloader_kwargs = {'num_workers': args.nb_workers, 'pin_memory': True} if use_cuda else {}
# create output dir if not exist
target_path = Path(args.output)
target_path.mkdir(parents=True, exist_ok=True)
# copy config.txt to output dir
shutil.copy2('unet_config.txt', target_path)
writer = SummaryWriter(log_dir=os.path.join('tensorboard', args.tag))
# use jpg or npy
torch.manual_seed(args.seed)
random.seed(args.seed)
np.random.seed(args.seed)
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
device = torch.device("cuda" if use_cuda else "cpu")
train_dataset, valid_dataset, args = data.load_datasets(parser, args)
train_sampler = torch.utils.data.DataLoader(
train_dataset, batch_size=args.batch_size, shuffle=True, drop_last=True,
worker_init_fn=utils.worker_init_fn,
**dataloader_kwargs
)
valid_sampler = torch.utils.data.DataLoader(
valid_dataset, batch_size=args.batch_size, **dataloader_kwargs
)
# make dict for self supervision loss weights
ss_weights_dict = {'harmonic_amplitudes': args.harmonic_amp_loss_weight,
'harmonic_distribution': 0.,
'f0_hz': args.f0_hz_loss_weight,
'harmonics_roll_off': args.harmonics_roll_off_loss_weight,
'line_spectral_frequencies': args.lsf_loss_weight,
'noise_gain': args.noise_gain_loss_weight,
'voiced_unvoiced': 0.,
'voiced_noise_magnitudes': args.noise_mags_loss_weight,
}
train_args_dict = vars(args)
train_params_dict = copy.deepcopy(vars(args)) # return args as dictionary with no influence on args
model_class = model_utls.ModelLoader.get_model(args.architecture)
model_to_train = model_class.from_config(train_params_dict)
model_to_train.to(device)
optimizer = torch.optim.Adam(
model_to_train.parameters(),
lr=args.lr,
weight_decay=args.weight_decay
)
scheduler = torch.optim.lr_scheduler.StepLR(optimizer, 200, gamma=args.lr_decay_gamma)
es = utils.EarlyStopping(patience=args.patience)
# if a model is specified: resume training
if args.wst_model:
model_path = Path(os.path.join('trained_models', args.wst_model)).expanduser()
with open(Path(model_path, args.wst_model + '.json'), 'r') as stream:
results = json.load(stream)
target_model_path = Path(model_path, args.wst_model + ".pth")
state_dict = torch.load(target_model_path, map_location=device)
model_to_train.load_state_dict(state_dict)
# train for another epochs_trained
t = tqdm.trange(
results['epochs_trained'],
results['epochs_trained'] + args.epochs + 1,
disable=args.quiet
)
train_losses = results['train_loss_history']
valid_losses = results['valid_loss_history']
train_times = results['train_time_history']
# we don't set the parameters below to allow resuming training on different data set
# (model is saved with new name, so there is no risk of overwriting)
best_epoch = 0
#es.best = results['best_loss']
#es.num_bad_epochs = results['num_bad_epochs']
# else start from 0
else:
t = tqdm.trange(1, args.epochs + 1, disable=args.quiet)
train_losses = []
valid_losses = []
train_times = []
best_epoch = 0
for epoch in t:
t.set_description("Training Epoch")
end = time.time()
train_loss = train(args, model_to_train, device, train_sampler, optimizer, ss_weights_dict)
# calculate validation loss only if model is not optimized on one single example
if args.one_example or args.one_batch or (args.dataset == 'synthetic'):
# if overfitting on one example, early stopping is done based on training loss
valid_loss = train_loss
else:
valid_loss = valid(args, model_to_train, device, valid_sampler)
writer.add_scalar("Validation_cost", valid_loss, epoch)
valid_losses.append(valid_loss)
writer.add_scalar("Training_cost", train_loss, epoch)
scheduler.step()
train_losses.append(train_loss)
stop = es.step(valid_loss)
if valid_loss == es.best:
best_epoch = epoch
t.set_postfix(
train_loss=train_loss, val_loss=valid_loss
)
utils.save_checkpoint({
'epoch': epoch + 1,
'state_dict': model_to_train.state_dict(),
'best_loss': es.best,
'optimizer': optimizer.state_dict(),
'scheduler': scheduler.state_dict()
},
is_best=valid_loss == es.best,
path=target_path,
tag=args.tag
)
# save params
params = {
'epochs_trained': epoch,
'args': vars(args),
'best_loss': es.best,
'best_epoch': best_epoch,
'train_loss_history': train_losses,
'valid_loss_history': valid_losses,
'train_time_history': train_times,
'num_bad_epochs': es.num_bad_epochs
}
with open(Path(target_path, args.tag + '.json'), 'w') as outfile:
outfile.write(json.dumps(params, indent=4, sort_keys=True))
train_times.append(time.time() - end)
if stop:
print("Apply Early Stopping")
break
if __name__ == "__main__":
main()