-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtrain-target.py
133 lines (103 loc) · 4.66 KB
/
train-target.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
# Python 3.8.5
from Target import CNN
import torchvision.transforms as transforms
from datasets import UTKFace, CIFAR10, MNIST, ATT
from torch.utils.data import DataLoader
import torch.nn as nn
import torch
import argparse
import os
def eval_model(model, loader):
num_correct = 0
num_samples = 0
model.eval()
model.eval()
with torch.no_grad():
for x, y in loader:
x = x.to(device=args.device)
y = y.to(device=args.device)
logits = model(x)
_, preds = torch.max(logits, dim=1)
num_correct += (preds == y).sum()
num_samples += preds.size(0)
return (float(num_correct) / float(num_samples))
def main(args):
# transform for images
transform = transforms.Compose([transforms.Resize(size=(32,32)),
transforms.ToTensor(),
transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))])
# datasets
if args.dataset.lower() not in ['cifar10', 'utkface', 'mnist', 'att']:
print(f'\n\n\t[!] Error ocurred: No such dataset \"{args.dataset}\"\n')
exit(0)
if args.dataset.lower() == 'cifar10':
model = CNN(10).to(args.device)
dataset_path = './datasets/CIFAR10/'
train_dataset = CIFAR10(dataset_path, train=True, transform=transform)
eval_dataset = CIFAR10(dataset_path, eval=True, transform=transform)
test_dataset = CIFAR10(dataset_path, test=True, transform=transform)
elif args.dataset.lower() == 'utkface':
model = CNN(2).to(args.device)
dataset_path = './datasets/UTKFace/'
train_dataset = UTKFace(dataset_path, train=True, transform=transform)
eval_dataset = UTKFace(dataset_path, eval=True, transform=transform)
test_dataset = UTKFace(dataset_path, test=True, transform=transform)
elif args.dataset.lower() == 'mnist':
model = CNN(10).to(args.device)
dataset_path = './datasets/MNIST/'
train_dataset = MNIST(dataset_path, train=True, transform=transform)
eval_dataset = MNIST(dataset_path, eval=True, transform=transform)
test_dataset = MNIST(dataset_path, test=True, transform=transform)
elif args.dataset.lower() == 'att':
model = CNN(40).to(args.device)
dataset_path = './datasets/ATT/'
train_dataset = ATT(dataset_path, train=True, transform=transform)
eval_dataset = ATT(dataset_path, eval=True, transform=transform)
test_dataset = ATT(dataset_path, test=True, transform=transform)
# dataloader
train_loader = DataLoader(dataset=train_dataset, shuffle=True, batch_size=32)
eval_loader = DataLoader(dataset=eval_dataset, shuffle=True, batch_size=32)
test_loader = DataLoader(dataset=test_dataset, batch_size=32)
print(f' Training Set: {train_dataset.__len__()}')
print(f' Eval Set: {eval_dataset.__len__()}')
print(f' Test Set: {test_dataset.__len__()}\n')
# hyperparameter
criterion = nn.CrossEntropyLoss()
learning_rate = 0.0001
optimizer = torch.optim.Adam(model.parameters(), lr=learning_rate)
num_epochs = int(args.epochs)
# train target
model.train()
i = 0
for epoch in range(num_epochs):
for idx, (images, labels) in enumerate(train_loader):
images = images.to(args.device)
labels = labels.type(torch.int64).to(args.device)
i += 1
outputs = model(images)
loss = criterion(outputs, labels)
optimizer.zero_grad()
loss.backward()
optimizer.step()
print (f' Epoch [{epoch+1:2}/{num_epochs}], Loss: {loss.item():.4f}, Acc: {eval_model(model, eval_loader):.4f}')
print(' Training completed...!\n')
torch.save(model.state_dict(), f'./Target/target-model-{args.dataset}.pth')
print(f' Model stored at ./Target/target-model-{args.dataset}.pth')
# test model
print(f' Accuracy on Test Set: {eval_model(model, test_loader)}')
if __name__ == '__main__':
os.system('clear')
print("\n Privacy Enhancing Technologies - Semester Project - Train Target Model\n")
# collect command line arguments
parser = argparse.ArgumentParser(description='Privacy Enhancing Technologies - Semester Project')
parser.add_argument("--dataset",
required=True,
help="[CIFAR10, UTKFace, MNIST, ATT]")
parser.add_argument("--epochs",
default=50,
help="Number of training epochs")
parser.add_argument("--device",
default='cpu',
help="Provide cuda")
args = parser.parse_args()
main(args)