Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

PTv1, shapenet, part segmentation #28

Open
Jae-Seung-Jeon opened this issue Mar 9, 2023 · 4 comments
Open

PTv1, shapenet, part segmentation #28

Jae-Seung-Jeon opened this issue Mar 9, 2023 · 4 comments

Comments

@Jae-Seung-Jeon
Copy link

Hi, Thanks to your contributes.
I want to train PTv1, dataset=shapenet, for part segmentation.
Could you give me a running script for this please?
Thank you :)

@Gofinge
Copy link
Member

Gofinge commented Mar 9, 2023

Sure! The following ShapeNet config for PTv1 was from an older version of our codebase, and you need to migrate it to the released codebase. Also, I did not tune PTv1 on the ShapeNet part segmentation dataset, and you might need to tune the augmentation and scheduler setting to achieve better performance.

_base_ = [
    '../_base_/datasets/shapenet_part.py',
    '../_base_/schedulers/multi-step_sgd.py',
    '../_base_/tests/part_segmentation.py',
    '../_base_/default_runtime.py'
]

batch_size = 32
batch_size_val = 8
metric = "cat_mIoU"
# enable_amp = True

train_gpu = [2,3]

epochs = 100
start_epoch = 0
optimizer = dict(type='SGD', lr=0.5, momentum=0.9, weight_decay=0.0001, nesterov=True)
scheduler = dict(type='MultiStepLR', milestones=[epochs * 0.6, epochs * 0.8], steps_per_epoch=1, gamma=0.1)

model = dict(
    type='PointTransformerV2-PartSeg50',
    num_shape_classes=16,
    in_channels=6,
    num_classes=50
)


# dataset settings
dataset_type = "ShapeNetPartDataset"
data_root = "data/shapenetcore_partanno_segmentation_benchmark_v0_normal"
cache_data = False
names = ["Airplane_{}".format(i) for i in range(4)] + \
        ["Bag_{}".format(i) for i in range(2)] + \
        ["Cap_{}".format(i) for i in range(2)] + \
        ["Car_{}".format(i) for i in range(4)] + \
        ["Chair_{}".format(i) for i in range(4)] + \
        ["Earphone_{}".format(i) for i in range(3)] + \
        ["Guitar_{}".format(i) for i in range(3)] + \
        ["Knife_{}".format(i) for i in range(2)] + \
        ["Lamp_{}".format(i) for i in range(4)] + \
        ["Laptop_{}".format(i) for i in range(2)] + \
        ["Motorbike_{}".format(i) for i in range(6)] + \
        ["Mug_{}".format(i) for i in range(2)] + \
        ["Pistol_{}".format(i) for i in range(3)] + \
        ["Rocket_{}".format(i) for i in range(3)] + \
        ["Skateboard_{}".format(i) for i in range(3)] + \
        ["Table_{}".format(i) for i in range(3)]


data = dict(
    num_classes=50,
    ignore_label=-1,  # dummy ignore
    names=names,
    train=dict(
        type=dataset_type,
        split=["train", "val"],
        data_root=data_root,
        transform=[
            dict(type="NormalizeCoord"),
            # dict(type="CenterShift", apply_z=True),
            # dict(type="RandomRotate", angle=[-1, 1], axis='z', center=[0, 0, 0], p=0.5),
            # dict(type="RandomRotate", angle=[-1 / 24, 1 / 24], axis='x', p=0.5),
            # dict(type="RandomRotate", angle=[-1 / 24, 1 / 24], axis='y', p=0.5),
            # dict(type="RandomScale", scale=[0.9, 1.1]),
            # dict(type="RandomFlip", p=0.5),
            # dict(type="RandomJitter", sigma=0.005, clip=0.02),
            # dict(type="RandomShift", shift=[0.2, 0.2, 0.2]),
            # dict(type="ElasticDistortion", distortion_params=[[0.2, 0.4], [0.8, 1.6]]),

            # dict(type="Voxelize", voxel_size=0.01, hash_type='fnv', mode='train'),
            # dict(type="SphereCrop", point_max=2500, mode='random'),
            dict(type="ShufflePoint"),
            dict(type="ToTensor"),
            dict(type="Collect", keys=("coord", "cls_token", "label"), feat_keys=("coord", "norm"))
        ],
        loop=2,
        test_mode=False,
    ),

    val=dict(
        type=dataset_type,
        split="test",
        data_root=data_root,
        transform=[
            dict(type="NormalizeCoord"),
            dict(type="ToTensor"),
            dict(type="Collect", keys=("coord", "cls_token", "label"), feat_keys=("coord", "norm"))
        ],
        loop=1,
        test_mode=False,
    ),

    test=dict(
        type=dataset_type,
        split="test",
        data_root=data_root,
        transform=[
            dict(type="NormalizeCoord"),
            # dict(type="CenterShift", apply_z=True),
        ],
        loop=1,
        test_mode=True,
        test_cfg=dict(
            post_transform=[
                dict(type="ToTensor"),
                dict(type="Collect", keys=("coord", "cls_token"), feat_keys=("coord", "norm"))
            ],
            aug_transform=[
                [dict(type="RandomShift2", shift=((0, 0), (0, 0), (0, 0)))]
            ]
        )
    ),
)

criteria = [
    dict(type="CrossEntropyLoss",
         loss_weight=1.0,
         ignore_index=data["ignore_label"])
]

@Jae-Seung-Jeon
Copy link
Author

Thank you @Gofinge !!
I'm not sure I did it right,
I revised [/config/base/datasets/shapenet_part.py ] to the one you gave me.

And, I want to know the command by [sh scripts/train.sh ...] or [python tools/train.py ...]
I tried many different ways, but I failed. TT
Could you give me some advice..?

@Gofinge
Copy link
Member

Gofinge commented Mar 10, 2023

Hi, /config/base/datasets/shapenet_part.py is just a base config, not a task config. It doesn't contain the necessary components to start a task. You can modify it from a task config located in the dataset folder. For example, you can copy the ptv1 config in the ScanNet folder to the ShapeNetPart folder (mkdir configs/shapenet_part), then follow the old config which I provided to replace the config in the copied one.

@zongshun21
Copy link

I love people who have achieved so much and helped others, and the world will be wonderful because of you.

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

No branches or pull requests

3 participants