-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathicomp_lm.py
50 lines (42 loc) · 1.52 KB
/
icomp_lm.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
import numpy as np
import statsmodels.api as sm
# Implemented by Pongpisit Thanasutives in 2024
# beta = coefficients
def llf_complexity(X_pre, y_pre, beta=None, a_n=None, include_bias=False, verbose=False):
N = len(y_pre)
if a_n is None:
a_n = np.log(N)
if include_bias:
X_pre = sm.add_constant(X_pre)
if beta is None:
model = sm.OLS(y_pre, X_pre)
m_res = model.fit()
q = model.rank
rss = np.sum(m_res.resid**2)
S_inv = m_res.cov_params(scale=1)
llf = m_res.llf
else:
beta = beta.reshape(X_pre.shape[-1], 1)
q = np.linalg.matrix_rank(X_pre)
rss = np.sum((y_pre-X_pre@beta)**2)
S_inv = np.linalg.inv(X_pre.T@X_pre)
llf = -0.5*(N*np.log(2*np.pi) + N*np.log(rss/N) + N)
det = np.linalg.det(S_inv)
if verbose and det == 0.0:
print("inf covariance complexity")
C0 = np.trace(np.log(S_inv))-np.log(det)
C1 = q*np.log(np.trace(S_inv)/q)-np.log(det)
C_IFIM = (q+1)*np.log((np.trace(S_inv) + 2*rss/N)/(q+1)) - \
np.log(det) - np.log(2*rss/N)
C_COV = (q+1)*np.log((np.trace(S_inv) + 2*rss*(N-q)/(N**2))/(q+1)) - \
np.log(det) - np.log(2*rss*(N-q)/(N**2))
C0 = C0/2
C1 = C1/2
C_IFIM = C_IFIM/2
C_COV = C_COV/2
complexities = np.array([C0, C1, C_IFIM, C_COV])
icomps = -2*llf + 2*a_n*complexities
return llf, complexities, icomps
def icomp_ic(llf, complexities, a_n):
icomp = -2*llf+2*a_n*complexities
return icomp, np.argmin(icomp)