-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathday-173.cpp
91 lines (68 loc) · 2.54 KB
/
day-173.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
/*
Unique Paths III
On a 2-dimensional grid, there are 4 types of squares:
1 represents the starting square. There is exactly one starting square.
2 represents the ending square. There is exactly one ending square.
0 represents empty squares we can walk over.
-1 represents obstacles that we cannot walk over.
Return the number of 4-directional walks from the starting square to the ending
square, that walk over every non-obstacle square exactly once.
Example 1:
Input: [[1,0,0,0],[0,0,0,0],[0,0,2,-1]]
Output: 2
Explanation: We have the following two paths:
1. (0,0),(0,1),(0,2),(0,3),(1,3),(1,2),(1,1),(1,0),(2,0),(2,1),(2,2)
2. (0,0),(1,0),(2,0),(2,1),(1,1),(0,1),(0,2),(0,3),(1,3),(1,2),(2,2)
Example 2:
Input: [[1,0,0,0],[0,0,0,0],[0,0,0,2]]
Output: 4
Explanation: We have the following four paths:
1. (0,0),(0,1),(0,2),(0,3),(1,3),(1,2),(1,1),(1,0),(2,0),(2,1),(2,2),(2,3)
2. (0,0),(0,1),(1,1),(1,0),(2,0),(2,1),(2,2),(1,2),(0,2),(0,3),(1,3),(2,3)
3. (0,0),(1,0),(2,0),(2,1),(2,2),(1,2),(1,1),(0,1),(0,2),(0,3),(1,3),(2,3)
4. (0,0),(1,0),(2,0),(2,1),(1,1),(0,1),(0,2),(0,3),(1,3),(1,2),(2,2),(2,3)
Example 3:
Input: [[0,1],[2,0]]
Output: 0
Explanation:
There is no path that walks over every empty square exactly once.
Note that the starting and ending square can be anywhere in the grid.
Note:
1 <= grid.length * grid[0].length <= 20
*/
// Simple DFS + backtracking solution
class Solution {
public:
int dfs(vector<vector<int>>& grid, int fRow, int fCol, int zero) {
if (fRow < 0 || fCol < 0 || fRow >= (int)grid.size() ||
fCol >= (int)grid[0].size() || grid[fRow][fCol] == -1)
return 0;
if (grid[fRow][fCol] == 2) return zero == -1 ? 1 : 0;
grid[fRow][fCol] = -1;
zero -= 1;
int totalPaths =
dfs(grid, fRow - 1, fCol, zero) + dfs(grid, fRow, fCol - 1, zero) +
dfs(grid, fRow + 1, fCol, zero) + dfs(grid, fRow, fCol + 1, zero);
grid[fRow][fCol] = 0;
zero += 1;
return totalPaths;
}
int uniquePathsIII(vector<vector<int>>& grid) {
int rows = grid.size();
int cols = grid[0].size();
int zero = 0;
int fRow = 0;
int fCol = 0;
for (int row = 0; row < rows; row++) {
for (int col = 0; col < cols; col++) {
if (grid[row][col] == 0)
zero += 1;
else if (grid[row][col] == 1) {
fRow = row;
fCol = col;
}
}
}
return dfs(grid, fRow, fCol, zero);
}
};