Skip to content

Latest commit

 

History

History
97 lines (68 loc) · 2.03 KB

README.md

File metadata and controls

97 lines (68 loc) · 2.03 KB

MBTI Personality Classification based on users' social media posts


steps

Table of Contents

  1. About The Project
  2. Getting Started
  3. Usage

About The Project

Myers Briggs Type Indicator personality Classification based on users' from social media posts.

Built With

Getting Started

To get a local copy up and running follow these simple steps.

Dependencies


  • pip
     pip install torch pandas transformers tokenizers datasets numpy

Usage


Command line Arguments

Here the user has to input the required command line arguments to run the model.

It is recommended for an intial user to run "python main.py --help" , for information on each argument.

"-m" -> Model name.

"-d" -> Dataset directory path.

"-dl" -> Next delimiter.

"-w" -> Minimum words per post.

"-tb" -> Training batch size.

"-eb" -> Eval batch size.

"-r" -> Test split ratio.

"-l" -> Learning rate.

"-wd" -> Weight decay.

"-n" -> Num classes.

"-ml"-> Multilabel classification.

"-f" -> Number of epochs.

"-mt"-> Metrics.

"--optimizer" -> Optimizer.

"--loss" -> Loss criterion.

"--train"->To train model.

"-o"-> Output directory .

"--save_interval" 

Example Cli Command


python main.py -m vinai/bertweet-base -d ./mbti_1.csv -dl "|||" -w 5 -tb 256 -eb 256 -r 0.75 -l 176e-06 -wd 1e-05 -n 4 -f 5 --optimizer ADAM --loss BCE --train -o ./ops --save_interval 2