-
Notifications
You must be signed in to change notification settings - Fork 0
/
Stich1.py
359 lines (232 loc) · 11.2 KB
/
Stich1.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
#!/usr/bin/python
import os
import sys
import cv2
import math
import numpy as np
import utils
from numpy import linalg
import time
class Stitch(object):
#--------------------------------------------- copy kr skte
def __init__(self, image_dir, key_frame, output_dir, img_filter=None):
'''
image_dir: 'directory' containing all images
key_frame: 'dir/name.jpg' of the base image
output_dir: 'directory' where to save output images
optional:
img_filter = 'JPG'; None->Take all images
'''
self.key_frame_file = os.path.split(key_frame)[-1]
self.output_dir = output_dir
# Open the directory given in the arguments
self.dir_list = []
try:
self.dir_list = os.listdir(image_dir)
if img_filter:
# remove all files that doen't end with .[image_filter]
self.dir_list = filter(lambda x: x.find(img_filter) > -1, self.dir_list)
try: #remove Thumbs.db, is existent (windows only)
self.dir_list.remove('.DS_Store')
except ValueError:
pass
except:
print >> sys.stderr, ("Unable to open directory: %s" % image_dir)
sys.exit(-1)
self.dir_list = map(lambda x: os.path.join(image_dir, x), self.dir_list)
self.dir_list = filter(lambda x: x != key_frame, self.dir_list)
base_img_rgb = cv2.imread(key_frame)
if base_img_rgb.all() == None:
raise IOError("%s doesn't exist" %key_frame)
final_img = self.stitch(base_img_rgb, 0)
#----------------------------------------------------------------------
#////////////////////////////////////////////////////////////////
def filter_matches(self, matches, ratio = 0.850):
filtered_matches = []
for m in matches:
if len(m) == 2 and m[0].distance < m[1].distance * ratio:
filtered_matches.append(m[0])
return filtered_matches
def imageDistance(self, matches):
sumDistance = 0.0
for match in matches:
sumDistance += match.distance
return sumDistance
def findDimensions(self, image, homography):
base_p1 = np.ones(3, np.float32)
base_p2 = np.ones(3, np.float32)
base_p3 = np.ones(3, np.float32)
base_p4 = np.ones(3, np.float32)
(y, x) = image.shape[:2]
base_p1[:2] = [0,0]
base_p2[:2] = [x,0]
base_p3[:2] = [0,y]
base_p4[:2] = [x,y]
max_x = None
max_y = None
min_x = None
min_y = None
for pt in [base_p1, base_p2, base_p3, base_p4]:
hp = np.matrix(homography, np.float32) * np.matrix(pt, np.float32).T
hp_arr = np.array(hp, np.float32)
normal_pt = np.array([hp_arr[0]/hp_arr[2], hp_arr[1]/hp_arr[2]], np.float32)
if ( max_x == None or normal_pt[0,0] > max_x ):
max_x = normal_pt[0,0]
if ( max_y == None or normal_pt[1,0] > max_y ):
max_y = normal_pt[1,0]
if ( min_x == None or normal_pt[0,0] < min_x ):
min_x = normal_pt[0,0]
if ( min_y == None or normal_pt[1,0] < min_y ):
min_y = normal_pt[1,0]
min_x = min(0, min_x)
min_y = min(0, min_y)
return (min_x, min_y, max_x, max_y)
def stitch(self, base_img_rgb, round=0):
if ( len(self.dir_list) < 1 ):
return base_img_rgb
base_img = cv2.GaussianBlur(cv2.cvtColor(base_img_rgb,cv2.COLOR_BGR2GRAY), (5,5), 0)
# Use the SIFT feature detector
#detector = cv2.xfeatures2d.SIFT_create()
#detector = cv2.xfeatures2d.SURF_create()
detector = cv2.ORB_create(nfeatures=5800)
# Find key points in base image for motion estimation
base_features, base_descs = detector.detectAndCompute(base_img, None)
# Parameters for nearest-neighbor matching
index_params = dict(algorithm=6,
table_number=6,
key_size=15,
multi_probe_level=3
)
search_params = {}
FLANN_INDEX_KDTREE = 1
flann_params = dict(algorithm = FLANN_INDEX_KDTREE,
trees = 5)
matcher = cv2.FlannBasedMatcher(index_params, {})
print "Iterating through next images..."
closestImage = None
next_img_path = self.dir_list[0]
print next_img_path
print "Reading %s..." % next_img_path
# Read in the next image...
next_img_rgb = cv2.imread(next_img_path)
next_img = cv2.GaussianBlur(cv2.cvtColor(next_img_rgb,cv2.COLOR_BGR2GRAY), (5,5), 0)
print "\t Finding points..."
# Find points in the next frame
next_features, next_descs = detector.detectAndCompute(next_img, None)
matches = matcher.knnMatch(next_descs, trainDescriptors=base_descs, k=2)
print "\t Match Count: ", len(matches)
matches_subset = self.filter_matches(matches)
print "\t Filtered Match Count: ", len(matches_subset)
distance = self.imageDistance(matches_subset)
print "\t Distance from Key Image: ", distance
averagePointDistance = distance/float(len(matches_subset))
print "\t Average Distance: ", averagePointDistance
kp1 = []
kp2 = []
for match in matches_subset:
kp1.append(base_features[match.trainIdx])
kp2.append(next_features[match.queryIdx])
p1 = np.array([k.pt for k in kp1])
p2 = np.array([k.pt for k in kp2])
H, status = cv2.findHomography(p1, p2, cv2.RANSAC, 5.0)
print '%d / %d inliers/matched' % (np.sum(status), len(status))
inlierRatio = float(np.sum(status)) / float(len(status))
if ( (closestImage == None) or (inlierRatio > closestImage['inliers']) ):
closestImage = {}
closestImage['h'] = H
closestImage['inliers'] = inlierRatio
closestImage['dist'] = averagePointDistance
closestImage['path'] = next_img_path
closestImage['rgb'] = next_img_rgb
closestImage['img'] = next_img
closestImage['feat'] = next_features
closestImage['desc'] = next_descs
closestImage['match'] = matches_subset
print "Closest Image: ", closestImage['path']
print "Closest Image Ratio: ", closestImage['inliers']
self.dir_list = filter(lambda x: x != closestImage['path'], self.dir_list)
H = closestImage['h']
H = H / H[2,2]
H_inv = linalg.inv(H)
if ( closestImage['inliers'] > 0.1 ): # and
(min_x, min_y, max_x, max_y) = self.findDimensions(closestImage['img'], H_inv)
# Adjust max_x and max_y by base img size
max_x = max(max_x, base_img.shape[1])
max_y = max(max_y, base_img.shape[0])
move_h = np.matrix(np.identity(3), np.float32)
if ( min_x < 0 ):
move_h[0,2] += -min_x
max_x += -min_x
if ( min_y < 0 ):
move_h[1,2] += -min_y
max_y += -min_y
#print "Homography: \n", H
#print "Inverse Homography: \n", H_inv
#print "Min Points: ", (min_x, min_y)
mod_inv_h = move_h * H_inv
img_w = int(math.ceil(max_x))
img_h = int(math.ceil(max_y))
print "New Dimensions: ", (img_w, img_h)
# crop edges
print "Cropping..."
base_h, base_w, base_d = base_img_rgb.shape
next_h, next_w, next_d = closestImage['rgb'].shape
base_img_rgb = base_img_rgb[5:(base_h-5),5:(base_w-5)]
closestImage['rgb'] = closestImage['rgb'][5:(next_h-5),5:(next_w-5)]
# Warp the new image given the homography from the old image
base_img_warp = cv2.warpPerspective(base_img_rgb, move_h, (img_w, img_h))
print "Warped base image"
#utils.showImage(base_img_warp, scale=(0.2, 0.2), timeout=1000, save=True, title="base_img_warp")
#cv2.destroyAllWindows()
next_img_warp = cv2.warpPerspective(closestImage['rgb'], mod_inv_h, (img_w, img_h))
print "Warped next image"
# Put the base image on an enlarged palette
enlarged_base_img = np.zeros((img_h, img_w, 3), np.uint8)
print "Enlarged Image Shape: ", enlarged_base_img.shape
print "Base Image Shape: ", base_img_rgb.shape
print "Base Image Warp Shape: ", base_img_warp.shape
# enlarged_base_img[y:y+base_img_rgb.shape[0],x:x+base_img_rgb.shape[1]] = base_img_rgb
# enlarged_base_img[:base_img_warp.shape[0],:base_img_warp.shape[1]] = base_img_warp
# Create masked composite
(ret,data_map) = cv2.threshold(cv2.cvtColor(next_img_warp, cv2.COLOR_BGR2GRAY),
0, 255, cv2.THRESH_BINARY)
# add base image
enlarged_base_img = cv2.add(enlarged_base_img, base_img_warp,
mask=np.bitwise_not(data_map),
dtype=cv2.CV_8U)
# add next image
final_img = cv2.add(enlarged_base_img, next_img_warp,
dtype=cv2.CV_8U)
# Crop black edge
final_gray = cv2.cvtColor(final_img, cv2.COLOR_BGR2GRAY)
_, thresh = cv2.threshold(final_gray, 1, 255, cv2.THRESH_BINARY)
dino, contours, _ = cv2.findContours(thresh, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_NONE)
print "Found %d contours..." % (len(contours))
max_area = 0
best_rect = (0,0,0,0)
for cnt in contours:
x,y,w,h = cv2.boundingRect(cnt)
deltaHeight = h-y
deltaWidth = w-x
area = deltaHeight * deltaWidth
if ( area > max_area and deltaHeight > 0 and deltaWidth > 0):
max_area = area
best_rect = (x,y,w,h)
if ( max_area > 0 ):
final_img_crop = final_img[best_rect[1]:best_rect[1]+best_rect[3],
best_rect[0]:best_rect[0]+best_rect[2]]
final_img = final_img_crop
# output
final_filename = "%s/%d.JPG" % (self.output_dir, round)
cv2.imwrite(final_filename, final_img)
return self.stitch(final_img, round+1)
else:
return self.stitch(base_img_rgb, round+1)
# ----------------------------------------------------------------------------
if __name__ == '__main__':
start_time = time.time()
if ( len(sys.argv) < 4 ):
print >> sys.stderr, ("Usage: %s <image_dir> <key_frame> <output>" % sys.argv[0])
sys.exit(-1)
Stitch(sys.argv[1], sys.argv[2], sys.argv[3])
print("--- %s seconds ---" % (time.time() - start_time))