diff --git a/notebooks/1-comparison.ipynb b/notebooks/1-comparison.ipynb index 70c2608..a72ffc8 100644 --- a/notebooks/1-comparison.ipynb +++ b/notebooks/1-comparison.ipynb @@ -260,119 +260,7 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "## Plotly\n", - "\n", - "\"Plotly\n", - "\n", - "Plotly is solid choice for interactive plotting. Plotly has functionality in several languags. Here is the [Plotly Python documentation](https://plotly.com/python/).\n", - "\n", - "Here is an example using their \"Express\" functionality:" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "import plotly.express as px\n", - "\n", - "fig = px.scatter(x=[0, 1, 2, 3, 4], y=[0, 1, 4, 9, 16])\n", - "fig.show()" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Seaborn\n", - "\n", - "\"Seaborn\n", - "\n", - "Seaborn is a high level interactive interface for creating statistical visualizations built on matplotlib. Check out the [Seaborn documentation](https://seaborn.pydata.org/).\n", - "\n", - "Here is their [heatmap example](https://seaborn.pydata.org/examples/spreadsheet_heatmap.html):" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "import seaborn as sns\n", - "sns.set_theme()\n", - "\n", - "# Load the example flights dataset and convert to long-form\n", - "flights_long = sns.load_dataset(\"flights\")\n", - "flights = flights_long.pivot(index=\"month\", columns=\"year\", values=\"passengers\")\n", - "\n", - "# Draw a heatmap with the numeric values in each cell\n", - "f, ax = plt.subplots(figsize=(9, 6))\n", - "sns.heatmap(flights, annot=True, fmt=\"d\", linewidths=.5, ax=ax)\n", - "\n", - "plt.show();" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Bokeh\n", - "\n", - "\"Bokeh\n", - "\n", - "Bokeh is a Javascript-powered tool for creating interactive visualizations in modern web browsers. Check out the [Bokeh documentation](https://bokeh.org/)." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## UXarray\n", - "\n", - "\"UXarray\n", - "\n", - "UXarray specializes in unstructured grids, built around [UGRID conventions](https://ugrid-conventions.github.io/ugrid-conventions/) and Xarray syntax. See the [UXarray documentation](https://uxarray.readthedocs.io/en/latest/) and check out the the [UXarray Cookbook](https://projectpythia.org/unstructured-grid-viz-cookbook)." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## hvPlot\n", - "\n", - "\"Datashader\n", - "\n", - "hvPlot wraps both [Datashader](https://datashader.org/), a graphics pipeline, and [Holoviews](https://holoviews.org/), a tool for bundling data and metadata for intuitive interactive plotting, at a higher level. All 3 tools are by [Holoviz](https://holoviz.org/). Reference the [hvPlot documentation](https://hvplot.holoviz.org/).\n", - "\n", - "Here is a simple example from their [user guide](https://hvplot.holoviz.org/user_guide/Introduction.html):" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "import pandas as pd\n", - "import hvplot.pandas\n", - "\n", - "pd.options.plotting.backend = 'holoviews'\n", - "\n", - "index = pd.date_range('1/1/2000', periods=1000)\n", - "df = pd.DataFrame(np.random.randn(1000, 4), index=index, columns=list('ABCD')).cumsum()\n", - "\n", - "df.plot()" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "This useful diagram from [hvPlot's documentation](https://hvplot.holoviz.org/index.html) details how different high-level tools for data visualization interact.\n", - "\n", - "\"Datashader" + "Interactive visualization libraries such as Plotly, UXarray, seaborn, bokeh, and hvplot will be explored in a separate interactive plotting Cookbook." ] }, {