forked from lunash0/prometheus5_project_AIDrivingGuide
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathinference.py
220 lines (171 loc) · 9.81 KB
/
inference.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
"""
main.py
This script is intended for Standalone Execution.
It runs the model directly without requiring a web interface.
"""
import torch
import cv2
from engine.utils import load_yaml, default_argument_parser, setup
from tqdm import tqdm
from models.Pedestrian_Detection.ped_inference import detect_ped_frame, load_ped_model
from models.TrafficLights_Detection.tl_inference import detect_tl_frame, message_rule, load_tl_model
from models.Lane_Detection.lane_inference import detect_lane_frame , load_lane_model
from pathlib import Path
import os
def draw_boxes_on_frame(frame, ped_info, tl_info, lane_info, task_type='all', debug=False):
"""
type = ['all', 'message']
- all : bounding boxes and comments
- message : comments only
"""
ped_rects, ped_texts, ped_warning_texts = ped_info
tl_rectangles, tl_texts, tl_messages, prev_tl_messages = tl_info
# 1) Pedestrian
if task_type=='all':
for rect, text in zip(ped_rects, ped_texts):
cv2.rectangle(frame, rect[0][0], rect[0][1], rect[1], 2)
cv2.putText(frame, text[0], text[1], cv2.FONT_HERSHEY_SIMPLEX, 0.5, text[2], 2)
for warning_text in ped_warning_texts:
cv2.putText(frame, warning_text[0], warning_text[1], cv2.FONT_HERSHEY_SIMPLEX, 2, (0, 0, 255), 3)
# 2) Traffic Lights
if task_type=="all":
for rect, text in zip(tl_rectangles, tl_texts):
cv2.rectangle(frame, rect[0][0], rect[0][1], rect[1], 3)
cv2.putText(frame, text[0], text[1], cv2.FONT_HERSHEY_SIMPLEX, 0.5, text[2], 2, lineType=cv2.FILLED)
# sanity check
if debug is True:
print(f'[DEBUG] tl_messages = {tl_messages}')
if len(tl_messages) > 1:
message, color, prev_tl_messages = message_rule(tl_messages, prev_tl_messages)
prev_tl_messages.append(message)
cv2.putText(frame, message, (35, 85), cv2.FONT_HERSHEY_TRIPLEX, 3, color, 4, lineType=cv2.LINE_AA)
elif len(tl_messages) == 1:
message, color, prev_tl_messages = message_rule(tl_messages, prev_tl_messages)
if message == 'STOP' or message == 'PREPARE TO STOP':
prev_tl_messages.append(message)
cv2.putText(frame, message, (35, 85), cv2.FONT_HERSHEY_TRIPLEX, 3, color, 4, lineType=cv2.LINE_AA)
# 3) Lane
cv2.drawContours(frame, lane_info[0], lane_info[1], (0, 255, 255), thickness=3)
return frame, prev_tl_messages
def detect_image(task_type, pedestrian_model, traffic_light_model, lane_model,
input_path, output_path, \
ped_score_thr, tl_score_thr, \
iou_thr, conf_thr, warning_dst, device, \
lane_merge_thr=50, resize_width=1280, resize_height=720):
img_frame = cv2.imread(input_path)
img_frame = cv2.resize(img_frame, (resize_width, resize_height))
prev_tl_messages = ['NONE', 'NONE']
ped_rects, ped_texts, ped_warning_texts = detect_ped_frame(pedestrian_model, img_frame, ped_score_thr, iou_thr, conf_thr, warning_dst, device)
ped_info = (ped_rects, ped_texts, ped_warning_texts)
tl_rectangles, tl_texts, tl_messages = detect_tl_frame(traffic_light_model, img_frame, device, tl_score_thr)
tl_info = (tl_rectangles, tl_texts, tl_messages, prev_tl_messages)
lane_info = detect_lane_frame(lane_model, img_frame, device, threshold=lane_merge_thr)
processed_frame, prev_tl_messages = draw_boxes_on_frame(img_frame, ped_info, tl_info, lane_info, task_type)
cv2.imwrite(output_path, processed_frame)
print(f'[INFO] Saved image to {output_path}')
def detect_video(task_type, pedestrian_model, traffic_light_model, lane_model,
input_path, output_path, \
ped_score_thr, tl_score_thr, \
iou_thr, conf_thr, warning_dst, device,
lane_merge_thr=50, resize_width=1280, resize_height=720):
"""
Save video as avi file
"""
cap = cv2.VideoCapture(input_path)
video_fps = cap.get(cv2.CAP_PROP_FPS)
codec = cv2.VideoWriter_fourcc(*'XVID')
avi_output_path = output_path.with_suffix(".avi")
video_writer = cv2.VideoWriter(str(avi_output_path), codec, video_fps, (resize_width, resize_height))
frame_cnt = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
prev_tl_messages = ['NONE', 'NONE']
print(f'[INFO] Total number of frames: {frame_cnt}')
with tqdm(total=frame_cnt, desc="[INFO] Processing Frames") as pbar:
while True:
hasFrame, img_frame = cap.read()
if not hasFrame:
print(f'Processed all frames')
break
img_frame = cv2.resize(img_frame, (resize_width, resize_height))
ped_rects, ped_texts, ped_warning_texts = detect_ped_frame(pedestrian_model, img_frame, ped_score_thr, iou_thr, conf_thr, warning_dst, device)
ped_info = (ped_rects, ped_texts, ped_warning_texts)
tl_rectangles, tl_texts, tl_messages = detect_tl_frame(traffic_light_model, img_frame, device, tl_score_thr)
tl_info = (tl_rectangles, tl_texts, tl_messages, prev_tl_messages)
lane_info = detect_lane_frame(lane_model, img_frame, device, threshold=lane_merge_thr)
processed_frame, prev_tl_messages = draw_boxes_on_frame(img_frame, ped_info, tl_info, lane_info, task_type)
video_writer.write(processed_frame)
pbar.update(1)
video_writer.release()
cap.release()
print(f'[INFO] Saved video to {avi_output_path}')
def detect_video2mp4(task_type, pedestrian_model, traffic_light_model, lane_model,
input_path, output_path,
ped_score_thr, tl_score_thr, \
iou_thr, conf_thr, warning_dst, device,
lane_merge_thr=50, resize_width=1280, resize_height=720):
"""
Saves detected video as mp4 file
"""
cap = cv2.VideoCapture(input_path)
video_fps = cap.get(cv2.CAP_PROP_FPS)
codec = cv2.VideoWriter_fourcc(*'mp4v')
mp4_output_path = str(Path(output_path).with_suffix(".mp4"))
video_writer = cv2.VideoWriter(mp4_output_path, codec, video_fps, (resize_width, resize_height))
frame_cnt = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
prev_tl_messages = ['NONE', 'NONE']
print(f'[INFO] Total number of frames: {frame_cnt}')
with tqdm(total=frame_cnt, desc="[INFO] Processing Frames") as pbar:
while True:
hasFrame, img_frame = cap.read()
if not hasFrame:
print(f'Processed all frames')
break
img_frame = cv2.resize(img_frame, (resize_width, resize_height))
ped_rects, ped_texts, ped_warning_texts = detect_ped_frame(pedestrian_model, img_frame, ped_score_thr, iou_thr, conf_thr, warning_dst, device)
ped_info = (ped_rects, ped_texts, ped_warning_texts)
tl_rectangles, tl_texts, tl_messages = detect_tl_frame(traffic_light_model, img_frame, device, tl_score_thr)
tl_info = (tl_rectangles, tl_texts, tl_messages, prev_tl_messages)
lane_info = detect_lane_frame(lane_model, img_frame, device, threshold=lane_merge_thr)
processed_frame, prev_tl_messages = draw_boxes_on_frame(img_frame, ped_info, tl_info, lane_info, task_type)
video_writer.write(processed_frame)
pbar.update(1)
video_writer.release()
cap.release()
print(f'[INFO] Saved video to {mp4_output_path}')
def main(task_type, CFG_DIR, OUTPUT_DIR, video_path, image_path, ped_score_threshold, tf_score_threshold):
check_input_path = video_path if video_path is not None else image_path
if not os.path.exists(check_input_path):
print(f'[ERROR] Input file not found at: {check_input_path}. Exiting...')
exit(1)
cfg = load_yaml(CFG_DIR)
device_num = cfg['device']
device = torch.device(f"cuda:{device_num}" if torch.cuda.is_available() else "cpu")
print(f'[INFO] Device is on {device_num}')
print('[INFO] Loading models...')
pedestrian_model = load_ped_model(cfg['pedestrian']['model_path'], cfg['pedestrian']['num_classes'], device)
traffic_light_model = load_tl_model(cfg['traffic_light']['model_path'], cfg['traffic_light']['num_classes'], device)
lane_model = load_lane_model(cfg['lane']['model_path'], cfg['lane']['model_type'], device)
print('[INFO] Models loaded successfully')
print(f'[INFO] Task type : {task_type} | Pedestrian Score threshold : {ped_score_threshold} | Traffic Lights Score threshold : {tf_score_threshold}')
if video_path is not None:
print(f'[INFO] Processing video: {video_path}')
detect_video2mp4(task_type, pedestrian_model, traffic_light_model, lane_model,
video_path, OUTPUT_DIR,
ped_score_threshold, tf_score_threshold,
cfg['pedestrian']['iou_threshold'],
cfg['pedestrian']['confidence_threshold'],
cfg['pedestrian']['warning_distance'],
device,
lane_merge_thr=cfg['lane']['lane_merge_thr'])
if image_path is not None:
print(f'[INFO] Processing image: {image_path}')
detect_video2mp4(task_type, pedestrian_model, traffic_light_model, lane_model,
image_path,
OUTPUT_DIR,
ped_score_threshold, tf_score_threshold,
cfg['pedestrian']['iou_threshold'],
cfg['pedestrian']['confidence_threshold'],
cfg['pedestrian']['warning_distance'], device)
if __name__ == "__main__":
args = default_argument_parser()
task_type, cfg_dir, output_dir, video_path, image_path, ped_score_threshold, tf_score_threshold = setup(args)
main(task_type, cfg_dir, output_dir, video_path, image_path, ped_score_threshold, tf_score_threshold)