forked from rupak-118/Quora-Question-Pairs
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest.py
283 lines (193 loc) · 9.02 KB
/
test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
## Quora Question-pairs testing script
'''
Accepts two questions/sentences as input arguments and outputs a binary (0/1 - no/yes) answer
based on whether the two questions are semantically same, i.e. duplicate or not
'''
import sys
q1 = sys.argv[1]
q2 = sys.argv[2]
# Importing standard libraries
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import re, nltk, gensim
## Importing required NLTK libraries
#nltk.download('stopwords')
#nltk.download('wordnet')
from nltk.corpus import stopwords
from nltk.stem.porter import PorterStemmer
from nltk.stem.snowball import SnowballStemmer
from nltk.stem.wordnet import WordNetLemmatizer
## Importing required keras libraries
import keras
from keras.preprocessing import sequence
from keras.models import Model
from keras.layers import LSTM, Embedding, Input, Merge
from keras.optimizers import Adadelta
import keras.backend as K
#print("\nAll required libraries imported")
## Helper functions
# Pre-process and convert text to a list of words
def text_clean(corpus, keep_list):
'''
Purpose : Function to keep only alphabets, digits and certain words (punctuations, qmarks, tabs etc. removed)
Input : Takes a text corpus, 'corpus' to be cleaned along with a list of words, 'keep_list', which have to be retained
even after the cleaning process
Output : Returns the cleaned text corpus
'''
cleaned_corpus = pd.Series()
for row in corpus:
qs_list = []
for word in row.split():
word = word.lower()
word = re.sub(r"[^a-zA-Z0-9^.']"," ",word)
word = re.sub(r"what's", "what is ", word)
word = re.sub(r"\'ve", " have ", word)
word = re.sub(r"can't", "cannot ", word)
word = re.sub(r"n't", " not ", word)
word = re.sub(r"i'm", "i am ", word)
word = re.sub(r"\'re", " are ", word)
word = re.sub(r"\'d", " would ", word)
word = re.sub(r"\'ll", " will ", word)
# If the word contains numbers with decimals, this will preserve it
if bool(re.search(r'\d', word) and re.search(r'\.', word)) and word not in keep_list:
keep_list.append(word)
# Preserves certain frequently occuring dot words
if word not in keep_list:
p1 = re.sub(pattern='[^a-zA-Z0-9]',repl=' ',string=word)
qs_list.append(p1)
else : qs_list.append(word)
cleaned_corpus = cleaned_corpus.append(pd.Series(' '.join(qs_list)))
return cleaned_corpus
def preprocess(corpus, keep_list, cleaning = True, stemming = False, stem_type = None, lemmatization = True, remove_stopwords = True):
'''
Purpose : Function to perform all pre-processing tasks (cleaning, stemming, lemmatization, stopwords removal etc.)
Input :
'corpus' - Text corpus on which pre-processing tasks will be performed
'keep_list' - List of words to be retained during cleaning process
'cleaning', 'stemming', 'lemmatization', 'remove_stopwords' - Boolean variables indicating whether a particular task should
be performed or not
'stem_type' - Choose between Porter stemmer or Snowball(Porter2) stemmer. Default is "None", which corresponds to Porter
Stemmer. 'snowball' corresponds to Snowball Stemmer
Note : Either stemming or lemmatization should be used. There's no benefit of using both of them together
Output : Returns the processed text corpus
'''
if cleaning == True:
corpus = text_clean(corpus, keep_list)
''' All stopwords except the 'wh-' words are removed '''
if remove_stopwords == True:
wh_words = ['who', 'what', 'when', 'why', 'how', 'which', 'where', 'whom']
stop = set(stopwords.words('english'))
for word in wh_words:
stop.remove(word)
corpus = [[x for x in x.split() if x not in stop] for x in corpus]
else :
corpus = [[x for x in x.split()] for x in corpus]
if lemmatization == True:
lem = WordNetLemmatizer()
corpus = [[lem.lemmatize(x, pos = 'v') for x in x] for x in corpus]
if stemming == True:
if stem_type == 'snowball':
stemmer = SnowballStemmer(language = 'english')
corpus = [[stemmer.stem(x) for x in x] for x in corpus]
else :
stemmer = PorterStemmer()
corpus = [[stemmer.stem(x) for x in x] for x in corpus]
return corpus
def exponent_neg_manhattan_distance(left, right):
'''
Purpose : Helper function for the similarity estimate of the LSTMs outputs
Inputs : Two n-dimensional vectors
Output : Manhattan distance between the input vectors
'''
return K.exp(-K.sum(K.abs(left-right), axis=1, keepdims=True))
#print("\n Helper functions loaded")
# Based on the training set, a keep list of common dot words was prepared
common_dot_words = ['u.s.', 'b.tech', 'm.tech', 'st.', 'e.g.', 'rs.', 'vs.', 'mr.',
'dr.', 'u.s', 'i.e.', 'node.js']
qs = [q1, q2]
qs = preprocess(qs, keep_list = common_dot_words, remove_stopwords = False)
# Separating processed questions
q1 = [qs[0]]
q2 = [qs[1]]
#print("\n Text pre-processing done")
# Loading pre-trained word vectors
EMBEDDING_FILE = 'GoogleNews-vectors-negative300.bin'
word2vec_model = gensim.models.KeyedVectors.load_word2vec_format(EMBEDDING_FILE, binary = True)
w2v = dict(zip(word2vec_model.wv.index2word, word2vec_model.wv.syn0))
#print("\n Pre-trained word vectors loaded")
# Prepare word-to-index mapping
vocabulary = dict()
inverse_vocabulary = ['<unk>'] # '<unk>' will never be used, it is only a placeholder for the [0, 0, ....0] embedding
qs = pd.DataFrame({'q1': q1, 'q2': q2})
questions_cols = ['q1', 'q2']
# Iterate through the text of both questions
for index, row in qs.iterrows():
for question in questions_cols:
q2n = [] # q2n -> numerical vector representation of each question
for word in row[question]:
# Check for stopwords who do not have a word2vec mapping and ignore them
if word in set(stopwords.words('english')) and word not in word2vec_model.vocab:
continue
if word not in vocabulary:
vocabulary[word] = len(inverse_vocabulary)
q2n.append(len(inverse_vocabulary))
inverse_vocabulary.append(word)
else:
q2n.append(vocabulary[word])
# Replace questions with equivalent numerical vector/ word-indices
qs.set_value(index, question, q2n)
# Prepare embedding layer
embedding_dim = 300
embeddings = np.random.randn(len(vocabulary)+1, embedding_dim) # Embedding matrix
embeddings[0] = 0 # This is to ignore the zero padding at the beginning of the sequence
# Build the embedding matrix
for word, index in vocabulary.items():
if word in word2vec_model.vocab:
embeddings[index] = w2v[word]
del word2vec_model, w2v
#print("\n Embedding matrix prepared")
# Feature-space of the two questions
X_test = {'left': qs['q1'], 'right': qs['q2']}
## Truncating and padding sequences to a length of 50
max_seq_length = 50
X_test['left'] = sequence.pad_sequences(X_test['left'], maxlen = max_seq_length)
X_test['right'] = sequence.pad_sequences(X_test['right'], maxlen = max_seq_length)
# Checking shapes and sizes to ensure no errors occur
assert X_test['left'].shape == X_test['right'].shape
#print("\n Begin model building")
## Define model architecture
# Model variables
n_hidden = 30
batch_size = 64
n_epoch = 1
# The visible layer
left_input = Input(shape=(max_seq_length,), dtype='int32', name = 'input_1')
right_input = Input(shape=(max_seq_length,), dtype='int32', name = 'input_2')
embedding_layer = Embedding(len(embeddings), embedding_dim, weights=[embeddings], input_length=max_seq_length,
trainable=False, name = 'embed_new')
# Embedded version of the inputs
encoded_left = embedding_layer(left_input)
encoded_right = embedding_layer(right_input)
# Since this is a siamese network, both sides share the same LSTM
shared_lstm = LSTM(n_hidden, activation = 'relu', name = 'lstm_1_2')
left_output = shared_lstm(encoded_left)
right_output = shared_lstm(encoded_right)
# Calculates the distance as defined by the MaLSTM model
malstm_distance = Merge(mode=lambda x: exponent_neg_manhattan_distance(x[0], x[1]),
output_shape=lambda x: (x[0][0], 1))([left_output, right_output])
# Combine all of the above in a Model
model = Model([left_input, right_input], [malstm_distance])
#print("\nModel built")
## Loading weights from a pre-trained model
model.load_weights("model30_relu_epoch_3.h5", by_name = True)
model.compile(loss='mean_squared_error', optimizer='adam', metrics=['accuracy'])
#print("\n Weights loaded and compiled")
#print("\n Making prediction")
## Predict using pre-trained model
pred = model.predict([X_test['left'], X_test['right']])
print("\n")
if pred>0.5:
print(1)
else :
print(0)