-
Notifications
You must be signed in to change notification settings - Fork 1
/
criteo_preprocess.py
310 lines (253 loc) · 10.1 KB
/
criteo_preprocess.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
# Copyright 2023 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""TFX beam preprocessing pipeline for Criteo data.
Preprocessing util for criteo data. Transformations:
1. Fill missing features with zeros.
2. Set negative integer features to zeros.
3. Normalize integer features using log(x+1).
4. For categorical features (hex), convert to integer and take value modulus the
max_vocab_size value.
Usage:
For raw Criteo data, this script should be run twice.
First run should set vocab_gen_mode to true. This run is used to generate
vocabulary files in the temp_dir location.
Second run should set vocab_gen_mode to false. It is necessary to point to the
same temp_dir used during the first run.
"""
import argparse
import datetime
import os
from absl import logging
import apache_beam as beam
import numpy as np
import tensorflow as tf
import tensorflow_transform as tft
import tensorflow_transform.beam as tft_beam
from tensorflow_transform.tf_metadata import dataset_metadata
from tensorflow_transform.tf_metadata import schema_utils
from tfx_bsl.public import tfxio
parser = argparse.ArgumentParser()
parser.add_argument(
"--input_path",
default=None,
required=True,
help="Input path. Be sure to set this to cover all data, to ensure "
"that sparse vocabs are complete.")
parser.add_argument(
"--output_path",
default=None,
required=True,
help="Output path.")
parser.add_argument(
"--temp_dir",
default=None,
required=True,
help="Directory to store temporary metadata. Important because vocab "
"dictionaries will be stored here. Co-located with data, ideally.")
parser.add_argument(
"--csv_delimeter",
default="\t",
help="Delimeter string for input and output.")
parser.add_argument(
"--vocab_gen_mode",
action="store_true",
default=False,
help="If it is set, process full dataset and do not write CSV output. In "
"this mode, See temp_dir for vocab files. input_path should cover all "
"data, e.g. train, test, eval.")
parser.add_argument(
"--runner",
help="Runner for Apache Beam, needs to be one of {DirectRunner, "
"DataflowRunner}.",
default="DirectRunner")
parser.add_argument(
"--project",
default=None,
help="ID of your project. Ignored by DirectRunner.")
parser.add_argument(
"--region",
default=None,
help="Region. Ignored by DirectRunner.")
parser.add_argument(
"--max_vocab_size",
type=int,
default=10_000_000,
help="Max index range, categorical features convert to integer and take "
"value modulus the max_vocab_size")
args = parser.parse_args()
NUM_NUMERIC_FEATURES = 13
NUMERIC_FEATURE_KEYS = [
f"int-feature-{x + 1}" for x in range(NUM_NUMERIC_FEATURES)]
CATEGORICAL_FEATURE_KEYS = [
"categorical-feature-%d" % x for x in range(NUM_NUMERIC_FEATURES + 1, 40)]
LABEL_KEY = "clicked"
# Data is first preprocessed in pure Apache Beam using numpy.
# This removes missing values and hexadecimal-encoded values.
# For the TF schema, we can thus specify the schema as FixedLenFeature
# for TensorFlow Transform.
FEATURE_SPEC = dict([(name, tf.io.FixedLenFeature([], dtype=tf.int64))
for name in CATEGORICAL_FEATURE_KEYS] +
[(name, tf.io.FixedLenFeature([], dtype=tf.float32))
for name in NUMERIC_FEATURE_KEYS] +
[(LABEL_KEY, tf.io.FixedLenFeature([], tf.float32))])
INPUT_METADATA = dataset_metadata.DatasetMetadata(
schema_utils.schema_from_feature_spec(FEATURE_SPEC))
def apply_vocab_fn(inputs):
"""Preprocessing fn for sparse features.
Applies vocab to bucketize sparse features. This function operates using
previously-created vocab files.
Pre-condition: Full vocab has been materialized.
Args:
inputs: Input features to transform.
Returns:
Output dict with transformed features.
"""
outputs = {}
outputs[LABEL_KEY] = inputs[LABEL_KEY]
for key in NUMERIC_FEATURE_KEYS:
outputs[key] = inputs[key]
for idx, key in enumerate(CATEGORICAL_FEATURE_KEYS):
vocab_fn = os.path.join(
args.temp_dir, "tftransform_tmp", "feature_{}_vocab".format(idx))
outputs[key] = tft.apply_vocabulary(inputs[key], vocab_fn)
return outputs
def compute_vocab_fn(inputs):
"""Preprocessing fn for sparse features.
This function computes unique IDs for the sparse features. We rely on implicit
behavior which writes the vocab files to the vocab_filename specified in
tft.compute_and_apply_vocabulary.
Pre-condition: Sparse features have been converted to integer and mod'ed with
args.max_vocab_size.
Args:
inputs: Input features to transform.
Returns:
Output dict with transformed features.
"""
outputs = {}
outputs[LABEL_KEY] = inputs[LABEL_KEY]
for key in NUMERIC_FEATURE_KEYS:
outputs[key] = inputs[key]
for idx, key in enumerate(CATEGORICAL_FEATURE_KEYS):
outputs[key] = tft.compute_and_apply_vocabulary(
x=inputs[key],
vocab_filename="feature_{}_vocab".format(idx))
return outputs
class FillMissing(beam.DoFn):
"""Fills missing elements with zero string value."""
def process(self, element):
elem_list = element.split(args.csv_delimeter)
out_list = []
for val in elem_list:
new_val = "0" if not val else val
out_list.append(new_val)
yield (args.csv_delimeter).join(out_list)
class NegsToZeroLog(beam.DoFn):
"""For int features, sets negative values to zero and takes log(x+1)."""
def process(self, element):
elem_list = element.split(args.csv_delimeter)
out_list = []
for i, val in enumerate(elem_list):
if i > 0 and i <= NUM_NUMERIC_FEATURES:
new_val = "0" if int(val) < 0 else val
new_val = np.log(int(new_val) + 1)
new_val = str(new_val)
else:
new_val = val
out_list.append(new_val)
yield (args.csv_delimeter).join(out_list)
class HexToIntModRange(beam.DoFn):
"""For categorical features, takes decimal value and mods with max value."""
def process(self, element):
elem_list = element.split(args.csv_delimeter)
out_list = []
for i, val in enumerate(elem_list):
if i > NUM_NUMERIC_FEATURES:
new_val = int(val, 16) % args.max_vocab_size
else:
new_val = val
out_list.append(str(new_val))
yield str.encode((args.csv_delimeter).join(out_list))
def transform_data(data_path, output_path):
"""Preprocesses Criteo data.
Two processing modes are supported. Raw data will require two passes.
If full vocab files already exist, only one pass is necessary.
Args:
data_path: File(s) to read.
output_path: Path to which output CSVs are written, if necessary.
"""
preprocessing_fn = compute_vocab_fn if args.vocab_gen_mode else apply_vocab_fn
gcp_project = args.project
region = args.region
job_name = (f"criteo-preprocessing-"
f"{datetime.datetime.now().strftime('%y%m%d-%H%M%S')}")
# set up Beam pipeline.
pipeline_options = None
if args.runner == "DataflowRunner":
options = {
"staging_location": os.path.join(output_path, "tmp", "staging"),
"temp_location": os.path.join(output_path, "tmp"),
"job_name": job_name,
"project": gcp_project,
"save_main_session": True,
"region": region,
"setup_file": "./setup.py",
}
pipeline_options = beam.pipeline.PipelineOptions(flags=[], **options)
elif args.runner == "DirectRunner":
pipeline_options = beam.options.pipeline_options.DirectOptions(
direct_num_workers=os.cpu_count(),
direct_running_mode="multi_threading")
with beam.Pipeline(args.runner, options=pipeline_options) as pipeline:
with tft_beam.Context(temp_dir=args.temp_dir):
processed_lines = (
pipeline
# Read in TSV data.
| beam.io.ReadFromText(data_path, coder=beam.coders.StrUtf8Coder())
# Fill in missing elements with the defaults (zeros).
| "FillMissing" >> beam.ParDo(FillMissing())
# For numerical features, set negatives to zero. Then take log(x+1).
| "NegsToZeroLog" >> beam.ParDo(NegsToZeroLog())
# For categorical features, mod the values with vocab size.
| "HexToIntModRange" >> beam.ParDo(HexToIntModRange()))
# CSV reader: List the cols in order, as dataset schema is not ordered.
ordered_columns = [LABEL_KEY
] + NUMERIC_FEATURE_KEYS + CATEGORICAL_FEATURE_KEYS
csv_tfxio = tfxio.BeamRecordCsvTFXIO(
physical_format="text",
column_names=ordered_columns,
delimiter=args.csv_delimeter,
schema=INPUT_METADATA.schema)
converted_data = (
processed_lines
| "DecodeData" >> csv_tfxio.BeamSource())
raw_dataset = (converted_data, csv_tfxio.TensorAdapterConfig())
# The TFXIO output format is chosen for improved performance.
transformed_dataset, _ = (
raw_dataset | tft_beam.AnalyzeAndTransformDataset(
preprocessing_fn, output_record_batches=False))
# Transformed metadata is not necessary for encoding.
transformed_data, transformed_metadata = transformed_dataset
if not args.vocab_gen_mode:
# Write to CSV.
transformed_csv_coder = tft.coders.CsvCoder(
ordered_columns, transformed_metadata.schema,
delimiter=args.csv_delimeter)
_ = (
transformed_data
| "EncodeDataCsv" >> beam.Map(transformed_csv_coder.encode)
| "WriteDataCsv" >> beam.io.WriteToText(output_path))
if __name__ == "__main__":
logging.set_verbosity(logging.INFO)
transform_data(data_path=args.input_path,
output_path=args.output_path)