-
Notifications
You must be signed in to change notification settings - Fork 218
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
1 changed file
with
342 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,342 @@ | ||
{ | ||
"cells": [ | ||
{ | ||
"cell_type": "markdown", | ||
"metadata": {}, | ||
"source": [ | ||
"# Find the global minima of function $f(x) = x + 10sin(5x) + 7cos(4x)$" | ||
] | ||
}, | ||
{ | ||
"cell_type": "markdown", | ||
"metadata": {}, | ||
"source": [ | ||
"## Create individual (use binary encoding)" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 4, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"from gaft.components import BinaryIndividual\n", | ||
"indv = BinaryIndividual(ranges=[(0, 10)], eps=0.001, verbosity=0)" | ||
] | ||
}, | ||
{ | ||
"cell_type": "markdown", | ||
"metadata": {}, | ||
"source": [ | ||
"## Create a population with `50` individuals" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 6, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"from gaft.components import Population\n", | ||
"population = Population(indv_template=indv, size=50).init()" | ||
] | ||
}, | ||
{ | ||
"cell_type": "markdown", | ||
"metadata": {}, | ||
"source": [ | ||
"## Create genetic operators: selection, crossover, mutation" | ||
] | ||
}, | ||
{ | ||
"cell_type": "markdown", | ||
"metadata": {}, | ||
"source": [ | ||
"### 1. Tournament selection" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 7, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"from gaft.operators import TournamentSelection\n", | ||
"selection = TournamentSelection()" | ||
] | ||
}, | ||
{ | ||
"cell_type": "markdown", | ||
"metadata": {}, | ||
"source": [ | ||
"### 2. Uniform crossover\n", | ||
"\n", | ||
"- `pc` is the probabililty of crossover operation\n", | ||
"- `pe` is the exchange probabiltiy for each possible gene bit in chromsome" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 8, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"from gaft.operators import UniformCrossover\n", | ||
"crossover = UniformCrossover(pc=0.8, pe=0.5)" | ||
] | ||
}, | ||
{ | ||
"cell_type": "markdown", | ||
"metadata": {}, | ||
"source": [ | ||
"### 3. Flip bit mutation\n", | ||
"- `pm` is the probability of mutation" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 9, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"from gaft.operators import FlipBitMutation\n", | ||
"mutation = FlipBitMutation(pm=0.1)" | ||
] | ||
}, | ||
{ | ||
"cell_type": "markdown", | ||
"metadata": {}, | ||
"source": [ | ||
"## Import an on-the-fly analysis plugin to output info to console" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 10, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"from gaft.analysis import ConsoleOutput" | ||
] | ||
}, | ||
{ | ||
"cell_type": "markdown", | ||
"metadata": {}, | ||
"source": [ | ||
"## Create an engine to run" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 11, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"from gaft import GAEngine\n", | ||
"\n", | ||
"engine = GAEngine(population=population, selection=selection,\n", | ||
" crossover=crossover, mutation=mutation,\n", | ||
" analysis=[ConsoleOutput])" | ||
] | ||
}, | ||
{ | ||
"cell_type": "markdown", | ||
"metadata": {}, | ||
"source": [ | ||
"## Define target function to optimize\n", | ||
"\n", | ||
"here we try to find the global minima of $f(x) = x + 10sin(5x) + 7cos(4x)$\n", | ||
"\n", | ||
"***GAFT*** find the maxima of the fitness function, here we use the `engine.minimize` decorator to tell ***GAFT*** to find the minima." | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 14, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"from math import sin, cos\n", | ||
"\n", | ||
"@engine.fitness_register\n", | ||
"@engine.minimize\n", | ||
"def fitness(indv):\n", | ||
" x, = indv.solution\n", | ||
" return x + 10*sin(5*x) + 7*cos(4*x)" | ||
] | ||
}, | ||
{ | ||
"cell_type": "markdown", | ||
"metadata": {}, | ||
"source": [ | ||
"## Run the engine" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 15, | ||
"metadata": {}, | ||
"outputs": [ | ||
{ | ||
"name": "stdout", | ||
"output_type": "stream", | ||
"text": [ | ||
"gaft.ConsoleOutput INFO Generation number: 50 Population number: 50\n", | ||
"gaft.ConsoleOutput INFO Generation: 1, best fitness: 14.893, scaled fitness: 14.893\n", | ||
"gaft.ConsoleOutput INFO Generation: 2, best fitness: 15.056, scaled fitness: 15.056\n", | ||
"gaft.ConsoleOutput INFO Generation: 3, best fitness: 15.103, scaled fitness: 15.103\n", | ||
"gaft.ConsoleOutput INFO Generation: 4, best fitness: 15.103, scaled fitness: 15.103\n", | ||
"gaft.ConsoleOutput INFO Generation: 5, best fitness: 15.154, scaled fitness: 15.154\n", | ||
"gaft.ConsoleOutput INFO Generation: 6, best fitness: 15.161, scaled fitness: 15.161\n", | ||
"gaft.ConsoleOutput INFO Generation: 7, best fitness: 15.161, scaled fitness: 15.161\n", | ||
"gaft.ConsoleOutput INFO Generation: 8, best fitness: 15.161, scaled fitness: 15.161\n", | ||
"gaft.ConsoleOutput INFO Generation: 9, best fitness: 15.161, scaled fitness: 15.161\n", | ||
"gaft.ConsoleOutput INFO Generation: 10, best fitness: 15.161, scaled fitness: 15.161\n", | ||
"gaft.ConsoleOutput INFO Generation: 11, best fitness: 15.161, scaled fitness: 15.161\n", | ||
"gaft.ConsoleOutput INFO Generation: 12, best fitness: 15.164, scaled fitness: 15.164\n", | ||
"gaft.ConsoleOutput INFO Generation: 13, best fitness: 15.164, scaled fitness: 15.164\n", | ||
"gaft.ConsoleOutput INFO Generation: 14, best fitness: 15.164, scaled fitness: 15.164\n", | ||
"gaft.ConsoleOutput INFO Generation: 15, best fitness: 15.164, scaled fitness: 15.164\n", | ||
"gaft.ConsoleOutput INFO Generation: 16, best fitness: 15.164, scaled fitness: 15.164\n", | ||
"gaft.ConsoleOutput INFO Generation: 17, best fitness: 15.164, scaled fitness: 15.164\n", | ||
"gaft.ConsoleOutput INFO Generation: 18, best fitness: 15.164, scaled fitness: 15.164\n", | ||
"gaft.ConsoleOutput INFO Generation: 19, best fitness: 15.164, scaled fitness: 15.164\n", | ||
"gaft.ConsoleOutput INFO Generation: 20, best fitness: 15.164, scaled fitness: 15.164\n", | ||
"gaft.ConsoleOutput INFO Generation: 21, best fitness: 15.164, scaled fitness: 15.164\n", | ||
"gaft.ConsoleOutput INFO Generation: 22, best fitness: 15.164, scaled fitness: 15.164\n", | ||
"gaft.ConsoleOutput INFO Generation: 23, best fitness: 15.164, scaled fitness: 15.164\n", | ||
"gaft.ConsoleOutput INFO Generation: 24, best fitness: 15.164, scaled fitness: 15.164\n", | ||
"gaft.ConsoleOutput INFO Generation: 25, best fitness: 15.164, scaled fitness: 15.164\n", | ||
"gaft.ConsoleOutput INFO Generation: 26, best fitness: 15.164, scaled fitness: 15.164\n", | ||
"gaft.ConsoleOutput INFO Generation: 27, best fitness: 15.164, scaled fitness: 15.164\n", | ||
"gaft.ConsoleOutput INFO Generation: 28, best fitness: 15.164, scaled fitness: 15.164\n", | ||
"gaft.ConsoleOutput INFO Generation: 29, best fitness: 15.164, scaled fitness: 15.164\n", | ||
"gaft.ConsoleOutput INFO Generation: 30, best fitness: 15.164, scaled fitness: 15.164\n", | ||
"gaft.ConsoleOutput INFO Generation: 31, best fitness: 15.164, scaled fitness: 15.164\n", | ||
"gaft.ConsoleOutput INFO Generation: 32, best fitness: 15.164, scaled fitness: 15.164\n", | ||
"gaft.ConsoleOutput INFO Generation: 33, best fitness: 15.164, scaled fitness: 15.164\n", | ||
"gaft.ConsoleOutput INFO Generation: 34, best fitness: 15.164, scaled fitness: 15.164\n", | ||
"gaft.ConsoleOutput INFO Generation: 35, best fitness: 15.164, scaled fitness: 15.164\n", | ||
"gaft.ConsoleOutput INFO Generation: 36, best fitness: 15.164, scaled fitness: 15.164\n", | ||
"gaft.ConsoleOutput INFO Generation: 37, best fitness: 15.164, scaled fitness: 15.164\n", | ||
"gaft.ConsoleOutput INFO Generation: 38, best fitness: 15.164, scaled fitness: 15.164\n", | ||
"gaft.ConsoleOutput INFO Generation: 39, best fitness: 15.164, scaled fitness: 15.164\n", | ||
"gaft.ConsoleOutput INFO Generation: 40, best fitness: 15.164, scaled fitness: 15.164\n", | ||
"gaft.ConsoleOutput INFO Generation: 41, best fitness: 15.164, scaled fitness: 15.164\n", | ||
"gaft.ConsoleOutput INFO Generation: 42, best fitness: 15.164, scaled fitness: 15.164\n", | ||
"gaft.ConsoleOutput INFO Generation: 43, best fitness: 15.164, scaled fitness: 15.164\n", | ||
"gaft.ConsoleOutput INFO Generation: 44, best fitness: 15.164, scaled fitness: 15.164\n", | ||
"gaft.ConsoleOutput INFO Generation: 45, best fitness: 15.164, scaled fitness: 15.164\n", | ||
"gaft.ConsoleOutput INFO Generation: 46, best fitness: 15.164, scaled fitness: 15.164\n", | ||
"gaft.ConsoleOutput INFO Generation: 47, best fitness: 15.164, scaled fitness: 15.164\n", | ||
"gaft.ConsoleOutput INFO Generation: 48, best fitness: 15.164, scaled fitness: 15.164\n", | ||
"gaft.ConsoleOutput INFO Generation: 49, best fitness: 15.164, scaled fitness: 15.164\n", | ||
"gaft.ConsoleOutput INFO Generation: 50, best fitness: 15.164, scaled fitness: 15.164\n", | ||
"gaft.ConsoleOutput INFO Optimal solution: ([0.892333984375], 15.164338102247847)\n" | ||
] | ||
} | ||
], | ||
"source": [ | ||
"engine.run(ng=50)" | ||
] | ||
}, | ||
{ | ||
"cell_type": "markdown", | ||
"metadata": {}, | ||
"source": [ | ||
"## After engine running, we can something more..." | ||
] | ||
}, | ||
{ | ||
"cell_type": "markdown", | ||
"metadata": {}, | ||
"source": [ | ||
"### Get the best individual" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 16, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"best_indv = engine.population.best_indv(engine.fitness)" | ||
] | ||
}, | ||
{ | ||
"cell_type": "markdown", | ||
"metadata": {}, | ||
"source": [ | ||
"## Get the solution" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 17, | ||
"metadata": {}, | ||
"outputs": [ | ||
{ | ||
"data": { | ||
"text/plain": [ | ||
"[0.892333984375]" | ||
] | ||
}, | ||
"execution_count": 17, | ||
"metadata": {}, | ||
"output_type": "execute_result" | ||
} | ||
], | ||
"source": [ | ||
"best_indv.solution" | ||
] | ||
}, | ||
{ | ||
"cell_type": "markdown", | ||
"metadata": {}, | ||
"source": [ | ||
"## And the fitness value" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 18, | ||
"metadata": {}, | ||
"outputs": [ | ||
{ | ||
"data": { | ||
"text/plain": [ | ||
"15.164338102247847" | ||
] | ||
}, | ||
"execution_count": 18, | ||
"metadata": {}, | ||
"output_type": "execute_result" | ||
} | ||
], | ||
"source": [ | ||
"engine.fitness(best_indv)" | ||
] | ||
} | ||
], | ||
"metadata": { | ||
"kernelspec": { | ||
"display_name": "Python 3", | ||
"language": "python", | ||
"name": "python3" | ||
}, | ||
"language_info": { | ||
"codemirror_mode": { | ||
"name": "ipython", | ||
"version": 3 | ||
}, | ||
"file_extension": ".py", | ||
"mimetype": "text/x-python", | ||
"name": "python", | ||
"nbconvert_exporter": "python", | ||
"pygments_lexer": "ipython3", | ||
"version": "3.5.3" | ||
} | ||
}, | ||
"nbformat": 4, | ||
"nbformat_minor": 2 | ||
} |