-
Notifications
You must be signed in to change notification settings - Fork 18
/
Copy pathp24.py
266 lines (246 loc) · 8.82 KB
/
p24.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
# build training set of data
import pandas as pd
import os
import time
from datetime import datetime
import re
from time import mktime
import matplotlib
import matplotlib.pyplot as plt
from matplotlib import style
style.use("dark_background")
# path = "X:/Backups/intraQuarter" # for Windows with X files :)
# if git clone'ed then use relative path,
# assuming you extracted the downloaded zip into this project's folder:
path = "intraQuarter"
def Key_Stats(
gather=[
"Total Debt/Equity",
'Trailing P/E',
'Price/Sales',
'Price/Book',
'Profit Margin',
'Operating Margin',
'Return on Assets',
'Return on Equity',
'Revenue Per Share',
'Market Cap',
'Enterprise Value',
'Forward P/E',
'PEG Ratio',
'Enterprise Value/Revenue',
'Enterprise Value/EBITDA',
'Revenue',
'Gross Profit',
'EBITDA',
'Net Income Avl to Common ',
'Diluted EPS',
'Earnings Growth',
'Revenue Growth',
'Total Cash',
'Total Cash Per Share',
'Total Debt',
'Current Ratio',
'Book Value Per Share',
'Cash Flow',
'Beta',
'Held by Insiders',
'Held by Institutions',
'Shares Short (as of',
'Short Ratio',
'Short % of Float',
'Shares Short (prior '
]
):
statspath = path+'/_KeyStats'
stock_list = [x[0] for x in os.walk(statspath)]
df = pd.DataFrame(
columns = [
'Date',
'Unix',
'Ticker',
'Price',
'stock_p_change',
'SP500',
'sp500_p_change',
'Difference',
##############
'DE Ratio',
'Trailing P/E',
'Price/Sales',
'Price/Book',
'Profit Margin',
'Operating Margin',
'Return on Assets',
'Return on Equity',
'Revenue Per Share',
'Market Cap',
'Enterprise Value',
'Forward P/E',
'PEG Ratio',
'Enterprise Value/Revenue',
'Enterprise Value/EBITDA',
'Revenue',
'Gross Profit',
'EBITDA',
'Net Income Avl to Common ',
'Diluted EPS',
'Earnings Growth',
'Revenue Growth',
'Total Cash',
'Total Cash Per Share',
'Total Debt',
'Current Ratio',
'Book Value Per Share',
'Cash Flow',
'Beta',
'Held by Insiders',
'Held by Institutions',
'Shares Short (as of',
'Short Ratio',
'Short % of Float',
'Shares Short (prior ',
##############
'Status'
]
)
sp500_df = pd.DataFrame.from_csv("YAHOO-INDEX_GSPC.csv")
stock_df = pd.DataFrame.from_csv("stock_prices.csv")
ticker_list = []
for each_dir in stock_list[1:]:
each_file = os.listdir(each_dir)
# ticker = each_dir.split("\\")[1] # Windows only
# ticker = each_dir.split("/")[1] # this didn't work so do this:
ticker = os.path.basename(os.path.normpath(each_dir))
# print(ticker) # uncomment to verify
ticker_list.append(ticker)
# starting_stock_value = False
# starting_sp500_value = False
if len(each_file) > 0:
for file in each_file:
date_stamp = datetime.strptime(file, '%Y%m%d%H%M%S.html')
unix_time = time.mktime(date_stamp.timetuple())
full_file_path = each_dir+'/'+file
source = open(full_file_path,'r').read()
try:
value_list = []
for each_data in gather:
try:
regex = re.escape(each_data) + r'.*?(\d{1,8}\.\d{1,8}M?B?|N/A)%?</td>'
value = re.search(regex, source)
value = (value.group(1))
if "B" in value:
value = float(value.replace("B",''))*1000000000
elif "M" in value:
value = float(value.replace("M",''))*1000000
value_list.append(value)
except Exception as e:
value = "N/A"
value_list.append(value)
try:
sp500_date = datetime.fromtimestamp(unix_time).strftime('%Y-%m-%d')
row = sp500_df[(sp500_df.index == sp500_date)]
sp500_value = float(row["Adjusted Close"])
except:
sp500_date = datetime.fromtimestamp(unix_time-259200).strftime('%Y-%m-%d')
row = sp500_df[(sp500_df.index == sp500_date)]
sp500_value = float(row["Adjusted Close"])
one_year_later = int(unix_time + 31536000)
try:
sp500_1y = datetime.fromtimestamp(one_year_later).strftime('%Y-%m-%d')
row = sp500_df[(sp500_df.index == sp500_1y)]
sp500_1y_value = float(row["Adjusted Close"])
except Exception as e:
try:
sp500_1y = datetime.fromtimestamp(one_year_later - 259200).strftime('%Y-%m-%d')
row = sp500_df[(sp500_df.index == sp500_1y)]
sp500_1y_value = float(row["Adjusted Close"])
except Exception as e:
print("S&P 500 1 year later: exception:",str(e))
try:
stock_price_1y = datetime.fromtimestamp(one_year_later).strftime('%Y-%m-%d')
row = stock_df[(stock_df.index == stock_price_1y)][ticker.upper()]
stock_1y_value = round(float(row),2)
except Exception as e:
try:
stock_price_1y = datetime.fromtimestamp(one_year_later - 259200).strftime('%Y-%m-%d')
row = stock_df[(stock_df.index == stock_price_1y)][ticker.upper()]
stock_1y_value = round(float(row),2)
except Exception as e:
print("stock price 1 year later: exception:",str(e))
try:
stock_price = datetime.fromtimestamp(unix_time).strftime('%Y-%m-%d')
row = stock_df[(stock_df.index == stock_price)][ticker.upper()]
stock_price = round(float(row),2)
except Exception as e:
try:
stock_price = datetime.fromtimestamp(unix_time - 259200).strftime('%Y-%m-%d')
row = stock_df[(stock_df.index == stock_price)][ticker.upper()]
stock_price = round(float(row),2)
except Exception as e:
print("stock price: exception:",str(e))
stock_p_change = round((((stock_1y_value - stock_price) / stock_price) * 100), 2)
sp500_p_change = round((((sp500_1y_value - sp500_value) / sp500_value) * 100), 2)
difference = stock_p_change - sp500_p_change
if difference > 5: # diff is greater than 5%
status = 1
else:
status = 0
# if value_list.count("N/A") > 0:
if value_list.count("N/A") > 15:
pass
else:
df = df.append(
{
'Date':date_stamp,
'Unix':unix_time,
'Ticker':ticker,
'Price':stock_price,
'stock_p_change':stock_p_change,
'SP500':sp500_value,
'sp500_p_change':sp500_p_change,
'Difference':difference,
'DE Ratio':value_list[0],
#'Market Cap':value_list[1],
'Trailing P/E':value_list[1],
'Price/Sales':value_list[2],
'Price/Book':value_list[3],
'Profit Margin':value_list[4],
'Operating Margin':value_list[5],
'Return on Assets':value_list[6],
'Return on Equity':value_list[7],
'Revenue Per Share':value_list[8],
'Market Cap':value_list[9],
'Enterprise Value':value_list[10],
'Forward P/E':value_list[11],
'PEG Ratio':value_list[12],
'Enterprise Value/Revenue':value_list[13],
'Enterprise Value/EBITDA':value_list[14],
'Revenue':value_list[15],
'Gross Profit':value_list[16],
'EBITDA':value_list[17],
'Net Income Avl to Common ':value_list[18],
'Diluted EPS':value_list[19],
'Earnings Growth':value_list[20],
'Revenue Growth':value_list[21],
'Total Cash':value_list[22],
'Total Cash Per Share':value_list[23],
'Total Debt':value_list[24],
'Current Ratio':value_list[25],
'Book Value Per Share':value_list[26],
'Cash Flow':value_list[27],
'Beta':value_list[28],
'Held by Insiders':value_list[29],
'Held by Institutions':value_list[30],
'Shares Short (as of':value_list[31],
'Short Ratio':value_list[32],
'Short % of Float':value_list[33],
'Shares Short (prior ':value_list[34],
'Status':status
},
ignore_index=True)
except Exception as e:
pass
# df.to_csv("key_stats_acc_perf_NO_NA_enhanced.csv")
df.to_csv("key_stats_acc_perf_WITH_NA_enhanced.csv")
Key_Stats()