Skip to content

Latest commit

 

History

History
74 lines (47 loc) · 1.27 KB

README.md

File metadata and controls

74 lines (47 loc) · 1.27 KB

PyTorch for ROCm

Install or update rocm-dev on the host system:

echo $(cat /sys/module/amdgpu/version)

sudo apt-get install rocm-dev
or
sudo apt-get update
sudo apt-get upgrade

Obtain docker image:

sudo systemctl start docker.socket

docker pull rocm/pytorch

Start a docker container:

sudo docker run -it --name=rocm-pytorch -v /mnt/Data/GPU-ROCm/AI/Data:/data --privileged --rm --device=/dev/kfd --device=/dev/dri --group-add video rocm/pytorch

Install lsmod in docker container:

apt-get install kmod -y

Check CPU, GPU, OpenCL info in docker container:

rocminfo

clinfo

Confirm working installation in docker container:

PYTORCH_TEST_WITH_ROCM=1 python3.6 test/run_test.py –-verbose

>/src/external/hip-on-vdi/rocclr/hip_code_object.cpp:92: guarantee(false && "hipErrorNoBinaryForGpu: Coudn't find binary for current devices!")
Aborted (core dumped)

No tests will fail if the compilation and installation is correct.

Install torchvision in docker container:

pip install torchvision

Clean docker cache on host system:

docker system prune -f

Dockerfile

docker build --rm -f ./ci/docker/ubuntu18.04.Dockerfile -t qpanprojects/rocm:latest .

docker push qpanprojects/rocm:latest