-
Notifications
You must be signed in to change notification settings - Fork 14
/
Copy pathyolov4.cpp
168 lines (136 loc) · 5.3 KB
/
yolov4.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
// Tencent is pleased to support the open source community by making ncnn available.
//
// Copyright (C) 2020 THL A29 Limited, a Tencent company. All rights reserved.
//
// Licensed under the BSD 3-Clause License (the "License"); you may not use this file except
// in compliance with the License. You may obtain a copy of the License at
//
// https://opensource.org/licenses/BSD-3-Clause
//
// Unless required by applicable law or agreed to in writing, software distributed
// under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR
// CONDITIONS OF ANY KIND, either express or implied. See the License for the
// specific language governing permissions and limitations under the License.
//modified 12-31-2021 Q-engineering
#include "net.h"
#include <opencv2/core/core.hpp>
#include <opencv2/highgui/highgui.hpp>
#include <opencv2/imgproc/imgproc.hpp>
#include <iostream>
#include <stdio.h>
#include <vector>
#define YOLOV4_TINY 1 //0 or undef for yolov4
ncnn::Net yolov4;
int target_size;
const float mean_vals[3] = {0, 0, 0};
const float norm_vals[3] = {1 / 255.f, 1 / 255.f, 1 / 255.f};
const char* class_names[] = {
"background", "person", "bicycle",
"car", "motorbike", "aeroplane", "bus", "train", "truck",
"boat", "traffic light", "fire hydrant", "stop sign",
"parking meter", "bench", "bird", "cat", "dog", "horse",
"sheep", "cow", "elephant", "bear", "zebra", "giraffe",
"backpack", "umbrella", "handbag", "tie", "suitcase",
"frisbee", "skis", "snowboard", "sports ball", "kite",
"baseball bat", "baseball glove", "skateboard", "surfboard",
"tennis racket", "bottle", "wine glass", "cup", "fork",
"knife", "spoon", "bowl", "banana", "apple", "sandwich",
"orange", "broccoli", "carrot", "hot dog", "pizza", "donut",
"cake", "chair", "sofa", "pottedplant", "bed", "diningtable",
"toilet", "tvmonitor", "laptop", "mouse", "remote", "keyboard",
"cell phone", "microwave", "oven", "toaster", "sink",
"refrigerator", "book", "clock", "vase", "scissors",
"teddy bear", "hair drier", "toothbrush"
};
struct Object
{
cv::Rect_<float> rect;
int label;
float prob;
};
static int detect_yolov4(const cv::Mat& bgr, std::vector<Object>& objects)
{
int img_w = bgr.cols;
int img_h = bgr.rows;
ncnn::Mat in = ncnn::Mat::from_pixels_resize(bgr.data, ncnn::Mat::PIXEL_BGR, bgr.cols, bgr.rows, target_size, target_size);
in.substract_mean_normalize(mean_vals, norm_vals);
ncnn::Extractor ex = yolov4.create_extractor();
ex.set_num_threads(4);
ex.input("data", in);
ncnn::Mat out;
ex.extract("output", out);
// printf("%d %d %d\n", out.w, out.h, out.c);
objects.clear();
for (int i = 0; i < out.h; i++)
{
const float* values = out.row(i);
Object object;
object.label = values[0];
object.prob = values[1];
object.rect.x = values[2] * img_w;
object.rect.y = values[3] * img_h;
object.rect.width = values[4] * img_w - object.rect.x;
object.rect.height = values[5] * img_h - object.rect.y;
objects.push_back(object);
}
return 0;
}
static void draw_objects(cv::Mat& bgr, const std::vector<Object>& objects)
{
for (size_t i = 0; i < objects.size(); i++)
{
const Object& obj = objects[i];
// fprintf(stderr, "%d = %.5f at %.2f %.2f %.2f x %.2f\n", obj.label, obj.prob,
// obj.rect.x, obj.rect.y, obj.rect.width, obj.rect.height);
cv::rectangle(bgr, obj.rect, cv::Scalar(255, 0, 0));
char text[256];
sprintf(text, "%s %.1f%%", class_names[obj.label], obj.prob * 100);
int baseLine = 0;
cv::Size label_size = cv::getTextSize(text, cv::FONT_HERSHEY_SIMPLEX, 0.5, 1, &baseLine);
int x = obj.rect.x;
int y = obj.rect.y - label_size.height - baseLine;
if (y < 0)
y = 0;
if (x + label_size.width > bgr.cols)
x = bgr.cols - label_size.width;
cv::rectangle(bgr, cv::Rect(cv::Point(x, y), cv::Size(label_size.width, label_size.height + baseLine)),
cv::Scalar(255, 255, 255), -1);
cv::putText(bgr, text, cv::Point(x, y + label_size.height),
cv::FONT_HERSHEY_SIMPLEX, 0.5, cv::Scalar(0, 0, 0));
}
}
int main(int argc, char** argv)
{
if (argc != 2)
{
fprintf(stderr, "Usage: %s [imagepath]\n", argv[0]);
return -1;
}
const char* imagepath = argv[1];
cv::Mat m = cv::imread(imagepath, 1);
if (m.empty())
{
fprintf(stderr, "cv::imread %s failed\n", imagepath);
return -1;
}
// original pretrained model from https://github.com/AlexeyAB/darknet
// the ncnn model https://drive.google.com/drive/folders/1YzILvh0SKQPS_lrb33dmGNq7aVTKPWS0?usp=sharing
// the ncnn model https://github.com/nihui/ncnn-assets/tree/master/models
#if YOLOV4_TINY
yolov4.load_param("yolov4-tiny-opt.param");
yolov4.load_model("yolov4-tiny-opt.bin");
target_size = 416;
#else
yolov4.load_param("yolov4-opt.param");
yolov4.load_model("yolov4-opt.bin");
target_size = 608;
#endif
yolov4.opt.num_threads=4;
std::vector<Object> objects;
detect_yolov4(m, objects);
draw_objects(m, objects);
cv::imshow("RPi4 - 1.95 GHz - 2 GB ram",m);
// cv::imwrite("test.jpg",m);
cv::waitKey(0);
return 0;
}