-
Notifications
You must be signed in to change notification settings - Fork 95
/
Copy pathspinorb.py
779 lines (641 loc) · 24.9 KB
/
spinorb.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
#!/usr/bin/env python
import os
import numpy as np
def read_cproj_NormalCar(inf='NormalCAR', save_cproj=True):
'''
Read NormalCAR of VASP output, which contains the coefficients of the PAW
projector functions.
Data stored in NormalCAR:
WRITE(IU) LMDIM,WDES%NIONS,WDES%NRSPINORS
WRITE(IU) CQIJ(1:LMDIM,1:LMDIM,1:WDES%NIONS,1:WDES%NRSPINORS)
WRITE(IU) WDES%NPROD, WDES%NPRO, WDES%NTYP
DO NT = 1, WDES%NTYP
WRITE(IU) WDES%LMMAX(NT), WDES%NITYP(NT)
END DO
DO ISPIN=1,WDES%ISPIN
DO NK=1,WDES%NKPTS
DO N=1,WDES%NB_TOT
WRITE(IU) CPROJ(1:WDES1%NPRO_TOT)
END DO
END DO
END DO
'''
from scipy.io import FortranFile
ncr = FortranFile(inf, 'r')
# rec1 = ncr.read_record(dtype=np.int32)
rec1 = ncr.read_ints()
lmdim, nions, nrspinors = rec1
# rec2 = ncr.read_record(dtype=np.complex128)
cqij = np.array(ncr.read_reals()).reshape((lmdim, lmdim, nions, nrspinors),
order='F')
rec3 = ncr.read_ints()
nprod, npro, ntyp = rec3
# lmmax, natoms for each type of elements
lmmax_per_typ = np.array([ncr.read_ints() for ii in range(ntyp)])
cproj = []
while True:
try:
rec = ncr.read_record(dtype=np.complex128)
cproj.append(rec)
except:
break
cproj = np.array(cproj)
if save_cproj:
np.save('cproj', cproj)
ncr.close()
return cproj
def read_SocCar(inf='SocCar'):
'''
SocCar contains the SOC matrix elements on the basis of core AE
wavefunctions.
H^{soc}_{ij} = < Y_i; \sigma_1 | S L | Y_j; \sigma_2 > *
< f_i(r) | d V_KS(r) / dr * r^{-1} | f_j(r) >
'''
soc = np.loadtxt(inf)
soc = soc[:, 0::2] + 1j * soc[:, 1::2]
nproj = soc.shape[-1]
soc.shape = (4, nproj, nproj)
return soc
def get_bandInfo(inFile='OUTCAR'):
"""
extract band energies from OUTCAR
"""
outcar = [line for line in open(inFile) if line.strip()]
Lvkpts_2 = -1
for ii, line in enumerate(outcar):
if 'NKPTS =' in line:
nkpts = int(line.split()[3])
nband = int(line.split()[-1])
if "NELECT =" in line:
nelect = float(line.split()[2])
if 'ISPIN =' in line:
ispin = int(line.split()[2])
if "k-points in reciprocal lattice and weights" in line:
Lvkpts_1 = ii + 1
if "Following reciprocal coordinates:" in line:
Lvkpts_2 = ii + 2
if 'reciprocal lattice vectors' in line:
ibasis = ii + 1
if 'E-fermi' in line:
Efermi = float(line.split()[2])
LineEfermi = ii + 1
# break
# basis vector of reciprocal lattice
B = np.array([line.split()[3:] for line in outcar[ibasis:ibasis+3]],
dtype=float)
# k-points vectors and weights
if Lvkpts_2 == -1:
tmp = np.array([line.split() for line in outcar[Lvkpts_1:Lvkpts_1+nkpts]],
dtype=float)
else:
tmp = np.array([line.split() for line in outcar[Lvkpts_2:Lvkpts_2+nkpts]],
dtype=float)
vkpts = tmp[:, :3]
wkpts = tmp[:, -1]
wkpts /= np.sum(wkpts)
# for ispin = 2, there are two extra lines "spin component..."
N = (nband + 2) * nkpts * ispin + (ispin - 1) * 2
bands = []
# vkpts = []
for line in outcar[LineEfermi:LineEfermi + N]:
if 'spin component' in line or 'band No.' in line:
continue
if 'k-point' in line:
# vkpts += [line.split()[3:]]
continue
bands.append(float(line.split()[1]))
bands = np.array(bands, dtype=float).reshape((ispin, nkpts, nband))
if os.path.isfile('KPOINTS'):
kp = open('KPOINTS').readlines()
kpt_bounds = None
kpt_path = None
if os.path.isfile('KPOINTS') and kp[2][0].upper() == 'L':
Nk_in_seg = int(kp[1].split()[0])
Nseg = nkpts / Nk_in_seg
vkpt_diff = np.zeros_like(vkpts, dtype=float)
for ii in range(Nseg):
start = ii * Nk_in_seg
end = (ii + 1) * Nk_in_seg
vkpt_diff[start:end, :] = vkpts[start:end, :] - vkpts[start, :]
kpt_path = np.linalg.norm(np.dot(vkpt_diff, B), axis=1)
# kpt_path = np.sqrt(np.sum(np.dot(vkpt_diff, B)**2, axis=1))
for ii in range(1, Nseg):
start = ii * Nk_in_seg
end = (ii + 1) * Nk_in_seg
kpt_path[start:end] += kpt_path[start-1]
# kpt_path /= kpt_path[-1]
kpt_bounds = np.concatenate((kpt_path[0::Nk_in_seg], [kpt_path[-1], ]))
# else:
# # get band path
# vkpt_diff = np.diff(vkpts, axis=0)
# kpt_path = np.zeros(nkpts, dtype=float)
# kpt_path[1:] = np.cumsum(np.linalg.norm(np.dot(vkpt_diff, B), axis=1))
# # kpt_path /= kpt_path[-1]
#
# # get boundaries of band path
# xx = np.diff(kpt_path)
# kpt_bounds = np.concatenate(
# ([0.0, ], kpt_path[np.isclose(xx, 0.0)], [kpt_path[-1], ]))
return kpt_path, bands, Efermi, kpt_bounds, wkpts, nelect
def setup_ls(L, theta=0.0, phi=0.0, saxis=None):
'''
Calculate the spin-orbit matrix in the basis of sphereical
harmonics:
< Y_l^m; \sigma_1 | S \cdot L | Y_l'^m'; \sigma_2 >
Note that
S \cdot L = (L_{+}S_{-} + L_{-}S_{+} + L_zS_z) / 2
and
L_{+}|l, m> = \sqrt{(l-m)(l+m+1)} | l, m+1>
= \sqrt{l(l+1) - m(m+1)} | l, m+1>
L_{-}|l, m> = \sqrt{(l+m)(l-m+1)} | l, m-1>
= \sqrt{l(l+1) - m(m-1)} | l, m-1>
input:
L: integer
theta: zenith angle in unit of radian (2\pi rad equal 360 degrees)
phi: azimuth angle in unit of radian (2\pi rad equal 360 degrees)
saxis: spin direction, used to calculate theta and phi
output:
spin-orbit matrix of dimension (4, 2L+1, 2L+1)
'''
if saxis is None:
theta = float(theta)
phi = float(phi)
else:
saxis = np.array(saxis, dtype=float)
saxis /= np.linalg.norm(saxis)
assert saxis.shape == (3,)
theta = np.arccos(saxis[2]) # theta in range [0, pi]
phi = np.arctan2(saxis[1], saxis[0]) # phi in range [-pi, pi]
TLP1 = 2 * L + 1
# angular momentum matrix elements in the basis of COMPLEX spherical
# harmonics
L_OP_C = np.zeros((3, TLP1, TLP1), dtype=complex)
# angular momentum matrix elements in the basis of REAL spherical
# harmonics
L_OP_R = np.zeros((3, TLP1, TLP1), dtype=complex)
# complex to real spherical harmonics conversion matrix
U_C2R = np.zeros((TLP1, TLP1), dtype=complex)
# real to complex spherical harmonics conversion matrix
# U_R2C is the conjugate transpose of U_C2R
U_R2C = np.zeros((TLP1, TLP1), dtype=complex)
LS = np.zeros((2, 2, TLP1, TLP1), dtype=complex)
# this rotation matrix is consistent with a rotation
# of a magnetic field by theta and phi according to
#
# ( cos \theta \cos phi, - sin \phi, cos \phi \sin \theta )
# U(\theta, \phi) = ( cos \theta \sin phi, cos \phi, sin \phi \sin \theta )
# ( - sin \theta , 0 , cos \theta )
#
# (first rotation by \theta and then by \phi)
# unfortunately this rotation matrix does not have
# the property U(\theta,\phi) = U^T(-\theta,-\phi)
ROTMAT = np.array([
[np.cos(theta/2)*np.exp(-1j*phi/2), -
np.sin(theta/2)*np.exp(-1j*phi/2)],
[np.sin(theta/2)*np.exp(1j*phi/2), np.cos(theta/2)*np.exp(1j*phi/2)]
], dtype=complex)
# set up L operator (in units of h_bar) for complex spherical harmonics y_lm
#
# |y_lm1> L_k <y_lm2| = |y_lm1> L_OP_C(m1,m2,k) <y_lm2| , where k=1,2,3
# correspond to L_x, L_y and Lz, respectively.
for ii in range(TLP1):
M = ii - L
C_UP = np.sqrt((L-M) * (L+M+1)) / 2
C_DW = np.sqrt((L+M) * (L-M+1)) / 2
# fill L_x
if ((M+1) <= L):
L_OP_C[0, ii+1, ii] = C_UP
if ((M-1) >= -L):
L_OP_C[0, ii-1, ii] = C_DW
# fill L_y
if ((M+1) <= L):
L_OP_C[1, ii+1, ii] = -1j * C_UP
if ((M-1) >= -L):
L_OP_C[1, ii-1, ii] = 1j * C_DW
# fill L_z
L_OP_C[2, ii, ii] = M
# set up transformation matrix real->complex spherical harmonics
#
# |y_lm1> \sum_m2 U_R2C(m1,m2) <Y_lm2|
#
# where y_lm and Y_lm are, respectively, the complex and real
# spherical harmonics
# please refer to:
# https://en.wikipedia.org/wiki/Spherical_harmonics#Real_form
# U_R2C is the conjugate transpose of U_C2R
sqrt2inv = 1.0 / np.sqrt(2.0)
for ii in range(TLP1):
M = ii - L
if (M < 0):
U_C2R[ii, ii] = 1j * sqrt2inv
U_C2R[-(ii+1), ii] = -1j * (-1)**M * sqrt2inv
# U_R2C[ii, ii] = -1j * sqrt2inv
# U_R2C[ii, -(ii+1)] = sqrt2inv
if (M == 0):
U_C2R[ii, ii] = 1.0
# U_R2C[ii, ii] = 1.0
if (M > 0):
U_C2R[-(ii+1), ii] = sqrt2inv
U_C2R[ii, ii] = (-1)**M * sqrt2inv
# U_R2C[ii, -(ii+1)] = 1j * (-1)**M * sqrt2inv
# U_R2C[ii, ii] = (-1)**M * sqrt2inv
# U_R2C = U_C2R.T.conj()
# Calculate L operator (in units of h_bar) with respect to
# the real spherical harmonics Y_lm
#
# |Y_lm1> L_k <Y_lm2| = |Y_lm1> L_OP_R(m1,m2,k) <Y_lm2| , where k=x,y,z
# n.b. L_OP_R(m1,m2,k)= \sum_ij U_C2R(m1,i) L_OP_C(i,j,k) U_R2C(j,m2)
#
for ii in range(3):
L_OP_R[ii] = np.dot(
U_C2R.T.conj(), np.dot(L_OP_C[ii], U_C2R)
)
# Calculate the SO (L \dot S) operator (in units of h_bar^2)
# <up| SO |up>
# LS(:,:,1)= -L_OP_R(:,:,3)/2
# <up| SO |down>
# LS(:,:,2)= -L_OP_R(:,:,1)/2 + (0._q,1._q)*L_OP_R(:,:,2)/2
# <down| SO |up>
# LS(:,:,3)= -L_OP_R(:,:,1)/2 - (0._q,1._q)*L_OP_R(:,:,2)/2
# <down|SO|down>
# LS(:,:,4)= L_OP_R(:,:,3)/2
# Calculate the SO (L \dot S) operator (in units of h_bar^2)
# <up| SO |up>
LS[0, 0, :, :] = L_OP_R[2, :, :]/2
# <up| SO |down>
LS[0, 1, :, :] = L_OP_R[0, :, :]/2 + 1.0j * L_OP_R[1, :, :]/2
# <down| SO |up>
LS[1, 0, :, :] = L_OP_R[0, :, :]/2 - 1.0j * L_OP_R[1, :, :]/2
# <down|SO|down>
LS[1, 1, :, :] = -L_OP_R[2, :, :]/2
# Rotate the LS operator by \theta and \phi
# LS = ROTMAT.T.conj() * LS * ROTMAT
for ii in range(TLP1):
for jj in range(TLP1):
LS[..., ii, jj] = np.dot(
ROTMAT.T.conj(), np.dot(LS[..., ii, jj], ROTMAT)
)
LS.shape = (4, TLP1, TLP1)
return LS
def paw_core_soc_mat(theta=0.0, phi=0.0, saxis=None):
'''
Calculate the spin-orbit matrix elements on the basis of the partial AE
wavefunctions.
H_{i;j} = < \phi_i; \sigma_1 | H_{soc} | \phi_j; \sigma_2 >
where \phi_i is the partial AE wfcs. Decomposing the partial waves as a
spherical harmonics | Y_{lm} >, a radial function | f_i (r) > and a spinor
| \sigma_1 >, the above equation changes to
H_{i;j} = < \phi_i; \sigma_1 | H_{soc} | \phi_j; \sigma_2 >
= (1 / 2*m**2*c**2) < Y_i; \sigma_i | S\cdotL | Y_j; \sigma_j >
< f_i(r) | (1/r)(d v_{ks} / dr) | f_j(r) >
The "SL" term can be easily calculated. For the radial part, we utilize VASP
to perform the calculation.
REF of the formula: https://link.aps.org/doi/10.1103/PhysRevB.94.235106
'''
ls = [0] + [setup_ls(l, theta, phi, saxis) for l in range(1, 4)]
l_proj_type = []
i_type = [] # type index of each atom
s_type = [] # symbol of each atom
with open('SocRadCar', 'r') as inp:
_ = inp.readline()
ntype, nions, nproj = np.array(inp.readline().split(), dtype=int)
for ii in range(ntype):
l_proj_type.append(
np.array(inp.readline().split(), dtype=int)
)
s_type = np.array(inp.readline().split(), dtype=str)
i_type = np.array(inp.readline().split(), dtype=int) - 1
assert nproj == np.sum(
[(2 * l_proj_type[ii] + 1).sum() for ii in i_type]
)
_ = inp.readline()
# the radial part
fij_r = np.array(
[line.split() for line in inp.readlines()
if line.strip()],
dtype=float
)
lmax = fij_r.shape[-1]
fij_r.shape = (nions, lmax, lmax)
hij = np.zeros((4, nproj, nproj), dtype=complex)
i1_lower = 0
for iatom in range(nions):
itp = i_type[iatom] # type index for this atom
l_type = l_proj_type[itp] # L quantum number for this atom
lmax = len(l_type) # Number of L quantum number
lmmax = (2 * l_type + 1).sum() # Number of projectors for this atom
i2_lower = 0
for ii in range(lmax):
j2_lower = 0
for jj in range(lmax):
# only for 0 < l <= 3
if (
(l_type[ii] == l_type[jj])
and (l_type[ii] > 0)
and (l_type[ii] <= 3)
):
ii_s = i1_lower + i2_lower
jj_s = i1_lower + j2_lower
ii_e = ii_s + 2 * l_type[ii] + 1
jj_e = jj_s + 2 * l_type[jj] + 1
for i_spinor in range(4):
hij[i_spinor, ii_s:ii_e, jj_s:jj_e] = \
ls[l_type[ii]][i_spinor] * fij_r[iatom, ii, jj]
j2_lower += 2 * l_type[jj] + 1
i2_lower += 2 * l_type[ii] + 1
i1_lower += lmmax
return hij
def spinorb_eigen(theta=0.0, phi=0.0, saxis=None,
normalcar='NormalCAR', outcar='OUTCAR',
factor=1.0, plot=True, figname='soc.png',
show=True,
):
'''
Calculates spin-orbit band structure non-selfconsistently. For more
information, refer to:
https://wiki.fysik.dtu.dk/gpaw/tutorials/spinorbit/spinorbit.html
'''
socmat = paw_core_soc_mat(theta, phi, saxis)
cprojs = read_cproj_NormalCar(normalcar)
kpath, E_nk, efermi, kbd, kptw, nelect = get_bandInfo(outcar)
nspin, nkpts, nband = E_nk.shape
assert socmat.shape[-1] == cprojs.shape[-1], \
"No. of projectors in SocCar and NormalCAR does NOT match!"
assert cprojs.shape[0] == nspin * nkpts * nband, \
"No. of bands in SocCar and OUTCAR does NOT match!"
nproj = socmat.shape[-1]
cprojs = cprojs.reshape((nspin, nkpts, nband, nproj))
if nspin == 1:
cprojs = np.array([cprojs[0], cprojs[0]])
i1 = np.arange(0, 2 * nband, 2)
i2 = np.arange(1, 2 * nband, 2)
H_mm = np.zeros((2*nband, 2*nband), dtype=complex)
# H_soc = np.zeros((4, nband, nband), dtype=complex)
# eigenvalues of SOC band
Esoc_nk = []
# eigenvectors of SOC band
Vsoc_nk = []
for ikpt in range(nkpts):
# initialize the Hamiltonian for each k-point
H_mm[:, :] = 0.0j
# H_soc[:,:] = 0.0j
H_mm[i1, i1] = E_nk[0, ikpt, :]
if nspin == 2:
H_mm[i2, i2] = E_nk[1, ikpt, :]
else:
H_mm[i2, i2] = E_nk[0, ikpt, :]
# print cprojs.shape, socmat.shape, cprojs.T.shape, H_mm[i1,i1].shape
# print ikpt
H_mm[0::2, 0::2] += np.dot(np.conj(cprojs[0, ikpt, :, :]),
np.dot(socmat[0], cprojs[0, ikpt, :, :].T))
H_mm[1::2, 1::2] += np.dot(np.conj(cprojs[1, ikpt, :, :]),
np.dot(socmat[3], cprojs[1, ikpt, :, :].T))
H_mm[0::2, 1::2] += np.dot(np.conj(cprojs[0, ikpt, :, :]),
np.dot(socmat[1], cprojs[1, ikpt, :, :].T))
H_mm[1::2, 0::2] += np.dot(np.conj(cprojs[1, ikpt, :, :]),
np.dot(socmat[2], cprojs[0, ikpt, :, :].T))
e_m, v_m = np.linalg.eigh(H_mm)
Esoc_nk.append(e_m)
Vsoc_nk.append(v_m)
np.savetxt('soc_band.dat', Esoc_nk)
Esoc_nk = np.array(Esoc_nk)
if plot:
import matplotlib as mpl
mpl.use('agg')
import matplotlib.pyplot as plt
fig, ax = plt.subplots()
fig.set_size_inches((3.0, 4.0))
E_nk -= efermi
Esoc_nk -= efermi
for ispin in range(nspin):
for iband in range(nband):
ax.plot(kpath, E_nk[ispin, :, iband],
ls=':', lw=0.5, color='b')
for iband in range(2*nband):
ax.plot(kpath, Esoc_nk[:, iband],
ls='-', lw=0.8, color='red')
for bd in kbd:
ax.axvline(x=bd, ls='-', color='k', lw=0.5, alpha=0.5)
ax.set_xticks(kbd)
ax.set_xticklabels(['M', r'$\Gamma$', 'K', 'M'])
# ax.set_xticklabels([])
ax.set_xlim(kpath.min(), kpath.max())
ax.set_ylim(-3.0, 3.0)
ax.set_ylabel('Energy [eV]', labelpad=5)
plt.tight_layout(pad=0.2)
plt.savefig(figname, dpi=360)
if show:
from subprocess import call
call(('feh -xdF ' + figname).split())
return Esoc_nk, Vsoc_nk, efermi, kptw, nelect
def get_mae(theta=0.0, phi=0.0, saxis=None,
sigma=0.01,
normalcar='NormalCAR', outcar='OUTCAR',
plot=False
):
"""
Get the magnetocrystalline anisotropy.
"""
e_nk, v_nk, ef, kw, nelect = spinorb_eigen(theta, phi, saxis, normalcar=normalcar,
outcar=outcar, plot=plot)
ef_soc, f_nk = find_fermi_level(e_nk, kw, nelect=nelect, sigma=sigma,
soc_band=True)
# print ef, ef_soc, e_nk[:,54].min(), e_nk[:,53].max()
# print f_nk[0,:]
# nkpts, nbnds = e_nk.shape
# kw /= kw.sum()
# kw = np.tile(kw, [nbnds, 1]).T
# # Fermi-Dirac distribution
# x = (e_nk - ef) / sigma
# x = x.clip(-100, 100)
# f_nk = 1.0 / (np.exp(x) + 1.0)
# f_nk[f_nk < 1E-12] = 0.0
# f_nk[:,54:] = 0.0
# f_nk[:,:54] = 1.0
return (e_nk * f_nk[0] * kw[:, None]).sum()
def find_fermi_level(band_energies, kpt_weight,
nelect, occ=None, sigma=0.01, nedos=100,
soc_band=False,
nmax=1000):
'''
Locate ther Fermi level from the band energies, k-points weights and number
of electrons.
1.0
Ne = \sum_{n,k} --------------------------- * w_k
((E_{nk}-E_f)/sigma)
e + 1
Inputs:
band_energies: The band energies of shape (nspin, nkpts, nbnds)
kpt_weight: The weight of each k-points.
nelect: Number of electrons.
occ: 1.0 for spin-polarized/SOC band energies, else 2.0.
sigma: Broadening parameter for the Fermi-Dirac distribution.
nedos: number of discrete points in approximately locating Fermi level.
soc_band: band energies from SOC calculations?
nmax: maximum iteration in finding the exact Fermi level.
'''
if band_energies.ndim == 2:
band_energies = band_energies[None, :]
nspin, nkpts, nbnds = band_energies.shape
if occ is None:
if nspin == 1 and (not soc_band):
occ = 2.0
else:
occ = 1.0
if nbnds > nedos:
nedos = nbnds * 5
kpt_weight = np.asarray(kpt_weight, dtype=float)
assert kpt_weight.shape == (nkpts,)
kpt_weight /= np.sum(kpt_weight)
emin = band_energies.min()
emax = band_energies.max()
e0 = np.linspace(emin, emax, nedos)
de = e0[1] - e0[0]
# find the approximated Fermi level
nelect_lt_en = np.array([
np.sum(occ * (band_energies <= en) * kpt_weight[None, :, None])
for en in e0
])
ne_tmp = nelect_lt_en[nedos//2]
if (np.abs(ne_tmp - nelect) < 0.05):
i_fermi = nedos // 2
i_lower = i_fermi - 1
i_upper = i_fermi + 1
elif (ne_tmp > nelect):
for ii in range(nedos//2-1, -1, -1):
ne_tmp = nelect_lt_en[ii]
if ne_tmp < nelect:
i_fermi = ii
i_lower = i_fermi
i_upper = i_fermi + 1
break
else:
for ii in range(nedos//2+1, nedos):
ne_tmp = nelect_lt_en[ii]
if ne_tmp > nelect:
i_fermi = ii
i_lower = i_fermi - 1
i_upper = i_fermi
break
############################################################
# Below is the algorithm used by VASP, much slower
############################################################
# find the approximated Fermi level
# x = (e0[None, None, None, :] - band_energies[:, :, :, None]) / sigma
# x = x.clip(-100, 100)
# dos = 1./sigma * np.exp(x) / (np.exp(x) + 1)**2 * \
# kpt_weight[None, :, None, None] * de
# ddos = np.sum(dos, axis=(0,1,2))
#
# nelect_from_dos_int = np.sum(ddos[:nedos/2])
# if (np.abs(nelect_from_dos_int - nelect) < 0.05):
# i_fermi = nedos / 2 - 1
# i_lower = i_fermi - 1
# i_upper = i_fermi + 1
# elif (nelect_from_dos_int > nelect):
# for ii in range(nedos/2, -1, -1):
# nelect_from_dos_int = np.sum(ddos[:ii])
# if nelect_from_dos_int < nelect:
# i_fermi = ii
# i_lower = i_fermi
# i_upper = i_fermi + 1
# break
# else:
# for ii in range(nedos/2, nedos):
# nelect_from_dos_int = np.sum(ddos[:ii])
# if nelect_from_dos_int > nelect:
# i_fermi = ii
# i_lower = i_fermi - 1
# i_upper = i_fermi
# break
# Locate the exact Fermi level using bisectioning
e_lower = e0[i_lower]
e_upper = e0[i_upper]
lower_B = False
upper_B = False
for ii in range(nmax):
e_fermi = (e_lower + e_upper) / 2.
z = (band_energies - e_fermi) / sigma
z = z.clip(-100, 100)
F_nk = occ / (np.exp(z) + 1)
N = np.sum(F_nk * kpt_weight[None, :, None])
# print ii, e_lower, e_upper, N
if (np.abs(N - nelect) < 1E-10):
break
if (np.abs(e_upper - e_lower / (np.abs(e_fermi) + 1E-10)) < 1E-14):
raise ValueError("Cannot reach the specified precision!")
if (N > nelect):
if not lower_B:
e_lower -= de
upper_B = True
e_upper = e_fermi
else:
if not upper_B:
e_upper += de
lower_B = True
e_lower = e_fermi
if (ii == nmax - 1):
raise ValueError("Cannot reach the specified precision!")
return e_fermi, F_nk
################################################################################
if __name__ == '__main__':
# spinorb_eigen(theta=0, plot=True, figname='v1.png')
# spinorb_eigen(theta=np.pi / 4, plot=True, figname='v2.png')
# spinorb_eigen(theta=np.pi / 2, plot=True, figname='v3.png')
# hij = paw_core_soc_mat()
# np.save('hij', hij)
# print setup_ls(L=1) * 2
z_angles = np.linspace(0, np.pi / 2., 10)
# z_angles = np.linspace(0, np.pi, 19)
MAEs = [get_mae(theta) for theta in z_angles]
MAEs -= MAEs[0]
for theta, mae in zip(z_angles, MAEs):
print("{:5.2f} {:22.16f}".format(theta / np.pi * 180, mae))
mae_vasp = np.loadtxt('../mae.dat')[:, 1]
import matplotlib.pyplot as plt
plt.style.use('ggplot')
fig = plt.figure(figsize=(4.0, 4.0))
# ax = plt.subplot()
ax1 = plt.subplot(211)
ax2 = plt.subplot(212)
ax1.plot(z_angles * 180 / np.pi, MAEs * 1000, 's-',
label='MAE current',
ls=':', ms=5)
ax1.plot(z_angles * 180 / np.pi, mae_vasp * 1000, 'o-',
label='MAE VASP',
ls=':', ms=5)
ax1.legend(loc='upper left', fontsize='small')
ax1.set_xlim(-5, 95)
ax1.set_xticks(range(0, 91, 10))
ax1.set_xlabel(r'$\theta$ [degree]', labelpad=5)
ax1.set_ylabel('Energy [meV]', labelpad=5)
ax2.plot(MAEs*1000, mae_vasp * 1000, 'h:', color='k', ms=5,
mfc='r', mew=0.5)
ax2.set_xlabel(r'MAE current [meV]', labelpad=5)
ax2.set_ylabel('MAE VASP [meV]', labelpad=5)
plt.tight_layout()
plt.savefig('mae_theta.png', dpi=400)
plt.show()
# a_angles = np.linspace(0, np.pi * 2, 20)
# MAEs = [get_mae(theta=np.pi / 2, phi=phi) for phi in a_angles]
# MAEs -= MAEs[0]
# for phi, mae in zip(a_angles, MAEs):
# print "{:5.2f} {:22.16f}".format(phi / np.pi * 180, mae)
#
# import matplotlib.pyplot as plt
# plt.style.use('ggplot')
#
# fig = plt.figure(figsize=(6.0, 4.0))
# ax = plt.subplot()
#
# ax.plot(a_angles * 180 / np.pi, MAEs * 1000, 's-',
# label='MAE current',
# ls=':', ms=5)
#
# # ax.set_xlim(-5, 185)
# # ax.set_xticks(range(0, 181, 10))
#
#
# plt.tight_layout()
# plt.savefig('mae_phi.png', dpi=400)
# plt.show()