-
Notifications
You must be signed in to change notification settings - Fork 95
/
Copy pathvaspwfc.py
1240 lines (1044 loc) · 48 KB
/
vaspwfc.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
#!/usr/bin/env python
# -*- coding: utf-8 -*-
import os
import numpy as np
from math import sqrt
from vasp_constant import *
from multiprocessing import cpu_count
from scipy.fftpack import fftfreq, fftn, ifftn
############################################################
def save2vesta(phi=None, poscar='POSCAR', prefix='wfc',
lgam=False, lreal=False, ncol=10):
'''
Save the real space pseudo-wavefunction as vesta format.
'''
nx, ny, nz = phi.shape
try:
pos = open(poscar, 'r')
head = ''
for line in pos:
if line.strip():
head += line
else:
break
head += '\n%5d%5d%5d\n' % (nx, ny, nz)
except:
raise IOError('Failed to open %s' % poscar)
# Faster IO
nrow = phi.size // ncol
nrem = phi.size % ncol
fmt = "%16.8E"
psi = phi.copy()
psi = psi.flatten(order='F')
psi_h = psi[:nrow * ncol].reshape((nrow, ncol))
psi_r = psi[nrow * ncol:]
with open(prefix + '_r.vasp', 'w') as out:
out.write(head)
out.write(
'\n'.join([''.join([fmt % xx for xx in row])
for row in psi_h.real])
)
out.write("\n" + ''.join([fmt % xx for xx in psi_r.real]))
if not (lgam or lreal):
with open(prefix + '_i.vasp', 'w') as out:
out.write(head)
out.write(
'\n'.join([''.join([fmt % xx for xx in row])
for row in psi_h.imag])
)
out.write("\n" + ''.join([fmt % xx for xx in psi_r.imag]))
############################################################
class vaspwfc(object):
'''
Class for processing VASP Pseudowavefunction stored in WAVECAR. This
program is motivated by PIESTA written by Ren Hao <[email protected]>.
The format of VASP WAVECAR, as shown in
http://www.andrew.cmu.edu/user/feenstra/wavetrans/
is:
Record-length #spin components RTAG(a value specifying the precision)
#k-points #bands ENCUT(maximum energy for plane waves)
LatVec-A
LatVec-B
LatVec-C
Loop over spin
Loop over k-points
#plane waves, k vector
Loop over bands
band energy, band occupation
End loop over bands
Loop over bands
Loop over plane waves
Plane-wave coefficient
End loop over plane waves
End loop over bands
End loop over k-points
End loop over spin
'''
def __init__(self, fnm='WAVECAR', lsorbit=False, lgamma=False,
gamma_half='x', omp_num_threads=1):
'''
Initialization.
'''
self._fname = fnm
# the directory containing the input file
self._dname = os.path.dirname(fnm)
if self._dname == '':
self._dname = '.'
self._lsoc = lsorbit
self._lgam = lgamma
self._gam_half = gamma_half.lower()
# It seems that some modules in scipy uses OPENMP, it is therefore
# desirable to set the OMP_NUM_THREADS to tune the parallization.
os.environ['OMP_NUM_THREADS'] = str(omp_num_threads)
assert not (lsorbit and lgamma), 'The two settings conflict!'
assert self._gam_half == 'x' or self._gam_half == 'z', \
'Gamma_half must be "x" or "z"'
try:
self._wfc = open(self._fname, 'rb')
except:
raise IOError('Failed to open %s' % self._fname)
# read the basic information
self.readWFHeader()
# read the band information
self.readWFBand()
if self._lsoc:
assert self._nspin == 1, "NSPIN = 1 for noncollinear version WAVECAR!"
def set_omp_num_threads(self, nproc):
'''
Set the OMP_NUM_THREADS envrionment variable
'''
assert 1 <= nproc <= cpu_count()
os.envrion['OMP_NUM_THREADS'] = str(nproc)
def isSocWfc(self):
"""
Is the WAVECAR from an SOC calculation?
"""
return True if self._lsoc else False
def isGammaWfc(self):
"""
Is the WAVECAR from an SOC calculation?
"""
return True if self._lgam else False
def readWFHeader(self):
'''
Read the system information from WAVECAR, which is written in the first
two record.
rec1: recl, nspin, rtag
rec2: nkpts, nbands, encut, ((cell(i,j) i=1, 3), j=1, 3)
'''
# goto the start of the file and read the first record
self._wfc.seek(0)
self._recl, self._nspin, self._rtag = np.array(
np.fromfile(self._wfc, dtype=np.float64, count=3),
dtype=np.int64
)
self._WFPrec = self.setWFPrec()
# the second record
self._wfc.seek(self._recl)
# From VASP 5.x on, Fermi energy is also written in this line, hence
# change 12 to 13
dump = np.fromfile(self._wfc, dtype=np.float64, count=13)
# Valid from VASP 5.x on
self._efermi = float(dump[12])
self._nkpts = int(dump[0]) # No. of k-points
self._nbands = int(dump[1]) # No. of bands
self._encut = dump[2] # Energy cutoff
# real space supercell basis
self._Acell = dump[3:12].reshape((3, 3))
# real space supercell volume
self._Omega = np.linalg.det(self._Acell)
# reciprocal space supercell volume
self._Bcell = np.linalg.inv(self._Acell).T
# Minimum FFT grid size
Anorm = np.linalg.norm(self._Acell, axis=1)
CUTOF = np.ceil(
sqrt(self._encut / RYTOEV) / (TPI / (Anorm / AUTOA))
)
self._ngrid = np.array(2 * CUTOF + 1, dtype=int)
def setWFPrec(self):
'''
Set wavefunction coefficients precision:
TAG = 45200: single precision complex, np.complex64, or complex(qs)
TAG = 45210: double precision complex, np.complex128, or complex(q)
'''
if self._rtag == 45200:
return np.complex64
elif self._rtag == 45210:
return np.complex128
elif self._rtag == 53300:
raise ValueError("VASP5 WAVECAR format, not implemented yet")
elif self._rtag == 53310:
raise ValueError("VASP5 WAVECAR format with double precision "
+ "coefficients, not implemented yet")
else:
raise ValueError("Invalid TAG values: {}".format(self._rtag))
def readWFBand(self):
'''
Extract KS energies and Fermi occupations from WAVECAR.
'''
self._nplws = np.zeros(self._nkpts, dtype=int)
self._kvecs = np.zeros((self._nkpts, 3), dtype=float)
self._bands = np.zeros(
(self._nspin, self._nkpts, self._nbands), dtype=float)
self._occs = np.zeros(
(self._nspin, self._nkpts, self._nbands), dtype=float)
for ii in range(self._nspin):
for jj in range(self._nkpts):
rec = self.whereRec(ii+1, jj+1, 1) - 1
self._wfc.seek(rec * self._recl)
dump = np.fromfile(self._wfc, dtype=np.float64,
count=4+3*self._nbands)
if ii == 0:
self._nplws[jj] = int(dump[0])
self._kvecs[jj] = dump[1:4]
dump = dump[4:].reshape((-1, 3))
self._bands[ii, jj, :] = dump[:, 0]
self._occs[ii, jj, :] = dump[:, 2]
if self._nkpts > 1:
tmp = np.linalg.norm(
np.dot(np.diff(self._kvecs, axis=0), self._Bcell), axis=1)
self._kpath = np.concatenate(([0, ], np.cumsum(tmp)))
else:
self._kpath = None
return self._kpath, self._bands
def get_kpath(self, nkseg=None):
'''
Construct k-point path, find out the k-path boundary if possible.
nkseg is the number of k-points in each k-path segments.
'''
if nkseg is None:
if os.path.isfile(self._dname + "/KPOINTS"):
kfile = open(self._dname + "/KPOINTS").readlines()
if kfile[2][0].upper() == 'L':
nkseg = int(kfile[1].split()[0])
else:
raise ValueError(
'Error reading number of k-points from KPOINTS')
assert nkseg > 0
nsec = self._nkpts // nkseg
v = self._kvecs.copy()
for ii in range(nsec):
ki = ii * nkseg
kj = (ii + 1) * nkseg
v[ki:kj, :] -= v[ki]
self._kpath = np.linalg.norm(np.dot(v, self._Bcell), axis=1)
for ii in range(1, nsec):
ki = ii * nkseg
kj = (ii + 1) * nkseg
self._kpath[ki:kj] += self._kpath[ki - 1]
self._kbound = np.concatenate(
(self._kpath[0::nkseg], [self._kpath[-1], ]))
return self._kpath, self._kbound
def gvectors(self, ikpt=1, force_Gamma=False, check_consistency=True):
'''
Generate the G-vectors that satisfies the following relation
(G + k)**2 / 2 < ENCUT
'''
assert 1 <= ikpt <= self._nkpts, 'Invalid kpoint index!'
kvec = self._kvecs[ikpt-1]
# force_Gamma: consider gamma-only case regardless of the actual setting
lgam = True if force_Gamma else self._lgam
# fx, fy, fz = [fftfreq(n) * n for n in self._ngrid]
# fftfreq in scipy.fftpack is a little different with VASP frequencies
############################################################
# Gamma version -50% memory usage and 1x speed.
############################################################
# fx = [ii if ii < self._ngrid[0] // 2 + 1 else ii - self._ngrid[0]
# for ii in range(
# self._ngrid[0] // 2 + 1
# if (lgam and (self._gam_half == 'x'))
# else
# self._ngrid[0])]
# fy = [jj if jj < self._ngrid[1] // 2 + 1 else jj - self._ngrid[1]
# for jj in range(self._ngrid[1])]
# fz = [kk if kk < self._ngrid[2] // 2 + 1 else kk - self._ngrid[2]
# for kk in range(
# self._ngrid[2] // 2 + 1
# if (lgam and (self._gam_half == 'z'))
# else
# self._ngrid[2])]
fx, fy, fz = [np.arange(n, dtype=int) for n in self._ngrid]
fx[self._ngrid[0] // 2 + 1:] -= self._ngrid[0]
fy[self._ngrid[1] // 2 + 1:] -= self._ngrid[1]
fz[self._ngrid[2] // 2 + 1:] -= self._ngrid[2]
if lgam:
if self._gam_half == 'x':
fx = fx[:self._ngrid[0] // 2 + 1]
else:
fz = fz[:self._ngrid[2] // 2 + 1]
# if lgam:
# # parallel gamma version of VASP WAVECAR exclude some planewave
# # components, -DwNGZHalf
# if self._gam_half == 'z':
# kgrid = np.array([(fx[ii], fy[jj], fz[kk])
# for kk in range(self._ngrid[2])
# for jj in range(self._ngrid[1])
# for ii in range(self._ngrid[0])
# if (
# (fz[kk] > 0) or
# (fz[kk] == 0 and fy[jj] > 0) or
# (fz[kk] == 0 and fy[jj]
# == 0 and fx[ii] >= 0)
# )], dtype=float)
# else:
# kgrid = np.array([(fx[ii], fy[jj], fz[kk])
# for kk in range(self._ngrid[2])
# for jj in range(self._ngrid[1])
# for ii in range(self._ngrid[0])
# if (
# (fx[ii] > 0) or
# (fx[ii] == 0 and fy[jj] > 0) or
# (fx[ii] == 0 and fy[jj]
# == 0 and fz[kk] >= 0)
# )], dtype=float)
# else:
# kgrid = np.array([(fx[ii], fy[jj], fz[kk])
# for kk in range(self._ngrid[2])
# for jj in range(self._ngrid[1])
# for ii in range(self._ngrid[0])], dtype=float)
############################################################
# 10x faster
############################################################
# In meshgrid, fx run the fastest, fz the slowest
gz, gy, gx = np.array(
np.meshgrid(fz, fy, fx, indexing='ij')
).reshape((3, -1))
kgrid = np.array([gx, gy, gz], dtype=float).T
if lgam:
if self._gam_half == 'z':
kgrid = kgrid[
(gz > 0) |
((gz == 0) & (gy > 0)) |
((gz == 0) & (gy == 0) & (gx >= 0))
]
else:
kgrid = kgrid[
(gx > 0) |
((gx == 0) & (gy > 0)) |
((gx == 0) & (gy == 0) & (gz >= 0))
]
# Kinetic_Energy = (G + k)**2 / 2
# HSQDTM = hbar**2/(2*ELECTRON MASS)
KENERGY = HSQDTM * np.linalg.norm(
np.dot(kgrid + kvec[np.newaxis, :], TPI*self._Bcell), axis=1
)**2
# find Gvectors where (G + k)**2 / 2 < ENCUT
Gvec = kgrid[np.where(KENERGY < self._encut)[0]]
# Check if the calculated number of planewaves and the one recorded in the
# WAVECAR are equal
if check_consistency:
# if self._lsoc:
# assert Gvec.shape[0] == self._nplws[ikpt - 1] // 2, \
# 'No. of planewaves not consistent for an SOC WAVECAR! %d %d %d' % \
# (Gvec.shape[0], self._nplws[ikpt - 1],
# np.prod(self._ngrid))
# else:
# assert Gvec.shape[0] == self._nplws[ikpt - 1], 'No. of planewaves not consistent! %d %d %d' % \
# (Gvec.shape[0], self._nplws[ikpt - 1],
# np.prod(self._ngrid))
if Gvec.shape[0] != self._nplws[ikpt - 1]:
if Gvec.shape[0] * 2 == self._nplws[ikpt - 1]:
if not self._lsoc:
raise ValueError('''
It seems that you are reading a WAVECAR from a NONCOLLINEAR VASP.
Please set 'lsorbit = True' when loading the WAVECAR.
For example:
wfc = vaspwfc('WAVECAR', lsorbit=True)
''')
elif Gvec.shape[0] == 2 * self._nplws[ikpt - 1] - 1:
if not self._lgam:
raise ValueError('''
It seems that you are reading a WAVECAR from a GAMMA-ONLY VASP. Please set
'lgamma = True' when loading the WAVECAR. Moreover, you may want to set
"gamma_half" if you are using VASP version <= 5.2.x. For VASP <= 5.2.x, check
which FFT VASP uses by the following command:
$ grep 'use.* FFT for wave' OUTCAR
Then
# for parallel FFT, VASP <= 5.2.x
wfc = vaspwfc('WAVECAR', lgamma=True, gamma_half='z')
# for serial FFT, VASP <= 5.2.x
wfc = vaspwfc('WAVECAR', lgamma=True, gamma_half='x')
For VASP >= 5.4, WAVECAR is written with x-direction half grid regardless of
parallel or serial FFT.
# "gamma_half" default to "x" for VASP >= 5.4
wfc = vaspwfc('WAVECAR', lgamma=True, gamma_half='x')
''')
else:
raise ValueError('''
NO. OF PLANEWAVES NOT CONSISTENT:
THIS CODE -> %d
FROM VASP -> %d
NGRIDS -> %d
''' % (Gvec.shape[0],
self._nplws[ikpt - 1] // 2 if self._lsoc else self._nplws[ikpt - 1],
np.prod(self._ngrid))
)
return np.asarray(Gvec, dtype=int)
def save2vesta(self, phi=None, lreal=False, poscar='POSCAR', prefix='wfc',
ncol=10):
'''
Save the real space pseudo-wavefunction as vesta format.
'''
nx, ny, nz = phi.shape
try:
pos = open(poscar, 'r')
head = ''
for line in pos:
if line.strip():
head += line
else:
break
head += '\n%5d%5d%5d\n' % (nx, ny, nz)
except:
raise IOError('Failed to open %s' % poscar)
# Faster IO
nrow = phi.size // ncol
nrem = phi.size % ncol
fmt = "%16.8E"
psi = phi.copy()
psi = psi.flatten(order='F')
psi_h = psi[:nrow * ncol].reshape((nrow, ncol))
psi_r = psi[nrow * ncol:]
with open(prefix + '_r.vasp', 'w') as out:
out.write(head)
out.write(
'\n'.join([''.join([fmt % xx for xx in row])
for row in psi_h.real])
)
out.write("\n" + ''.join([fmt % xx for xx in psi_r.real]))
if not (self._lgam or lreal):
with open(prefix + '_i.vasp', 'w') as out:
out.write(head)
out.write(
'\n'.join([''.join([fmt % xx for xx in row])
for row in psi_h.imag])
)
out.write("\n" + ''.join([fmt % xx for xx in psi_r.imag]))
def get_ps_wfc(self, *args, **kwargs):
'''
Alias for the wfc_r method.
'''
return self.wfc_r(*args, **kwargs)
def wfc_r(self, ispin=1, ikpt=1, iband=1,
gvec=None, Cg=None, ngrid=None,
rescale=None,
norm=False, kr_phase=False, r0=[0.0, 0.0, 0.0]):
'''
Obtain the pseudo-wavefunction of the specified KS states in real space
by performing FT transform on the reciprocal space planewave
coefficients. The 3D FT grid size is determined by ngrid, which
defaults to self._ngrid if not given. Gvectors of the KS states is used
to put 1D planewave coefficients back to 3D grid.
Inputs:
ispin : spin index of the desired KS states, starting from 1
ikpt : k-point index of the desired KS states, starting from 1
iband : band index of the desired KS states, starting from 1
gvec : the G-vectors correspond to the plane-wave coefficients
Cg : the plane-wave coefficients. If None, read from WAVECAR
ngrid : the FFT grid size
norm : normalized Cg?
kr_phase : whether or not to multiply the exp(ikr) phase
r0 : shift of the kr-phase to get full wfc other than primitive cell
The return wavefunctions are normalized in a way that
\sum_{ijk} | \phi_{ijk} | ^ 2 = 1
'''
self.checkIndex(ispin, ikpt, iband)
if ngrid is None:
ngrid = self._ngrid.copy() * 2
else:
ngrid = np.array(ngrid, dtype=int)
assert ngrid.shape == (3,)
assert np.alltrue(ngrid >= self._ngrid), \
"Minium FT grid size: (%d, %d, %d)" % \
(self._ngrid[0], self._ngrid[1], self._ngrid[2])
# By default, the WAVECAR only stores the periodic part of the Bloch
# wavefunction. In order to get the full Bloch wavefunction, one need to
# multiply the periodic part with the phase: exp(i k (r + r0). Below, the
# k-point vector and the real-space grid are both in the direct
# coordinates.
if kr_phase:
phase = np.exp(1j * np.pi * 2 *
np.sum(
self._kvecs[ikpt-1] *
(
# r
np.mgrid[
0:ngrid[0], 0:ngrid[1], 0:ngrid[2]
].reshape((3, np.prod(ngrid))).T /
ngrid.astype(float) +
# r0
np.array(r0, dtype=float)
),
axis=1
)).reshape(ngrid)
else:
phase = 1.0
# The default normalization of np.fft.fftn has the direct transforms
# unscaled and the inverse transforms are scaled by 1/n. It is possible
# to obtain unitary transforms by setting the keyword argument norm to
# "ortho" (default is None) so that both direct and inverse transforms
# will be scaled by 1/\sqrt{n}.
# default normalization factor so that
# \sum_{ijk} | \phi_{ijk} | ^ 2 = 1
normFac = rescale if rescale is not None else np.sqrt(np.prod(ngrid))
if gvec is None:
gvec = self.gvectors(ikpt)
if self._lgam:
if self._gam_half == 'z':
phi_k = np.zeros(
(ngrid[0], ngrid[1], ngrid[2]//2 + 1), dtype=np.complex128)
else:
phi_k = np.zeros(
(ngrid[0]//2 + 1, ngrid[1], ngrid[2]), dtype=np.complex128)
else:
phi_k = np.zeros(ngrid, dtype=np.complex128)
gvec %= ngrid[np.newaxis, :]
if self._lsoc:
wfc_spinor = []
if Cg:
dump = Cg
else:
dump = self.readBandCoeff(ispin, ikpt, iband, norm)
nplw = dump.shape[0] // 2
# spinor up
phi_k[gvec[:, 0], gvec[:, 1], gvec[:, 2]] = dump[:nplw]
wfc_spinor.append(ifftn(phi_k) * normFac * phase)
# spinor down
phi_k[:, :, :] = 0.0j
phi_k[gvec[:, 0], gvec[:, 1], gvec[:, 2]] = dump[nplw:]
wfc_spinor.append(ifftn(phi_k) * normFac * phase)
del dump
return wfc_spinor
else:
if Cg is not None:
phi_k[gvec[:, 0], gvec[:, 1], gvec[:, 2]] = Cg
else:
phi_k[gvec[:, 0], gvec[:, 1], gvec[:, 2]
] = self.readBandCoeff(ispin, ikpt, iband, norm)
if self._lgam:
# add some components that are excluded and perform c2r FFT
if self._gam_half == 'z':
for ii in range(ngrid[0]):
for jj in range(ngrid[1]):
fx = ii if ii < ngrid[0] // 2 + \
1 else ii - ngrid[0]
fy = jj if jj < ngrid[1] // 2 + \
1 else jj - ngrid[1]
if (fy > 0) or (fy == 0 and fx >= 0):
continue
phi_k[ii, jj, 0] = phi_k[-ii, -jj, 0].conjugate()
# VASP add a factor of SQRT2 for G != 0 in Gamma-only VASP
phi_k /= np.sqrt(2.)
phi_k[0, 0, 0] *= np.sqrt(2.)
return np.fft.irfftn(phi_k, s=ngrid) * normFac
elif self._gam_half == 'x':
for jj in range(ngrid[1]):
for kk in range(ngrid[2]):
fy = jj if jj < ngrid[1] // 2 + \
1 else jj - ngrid[1]
fz = kk if kk < ngrid[2] // 2 + \
1 else kk - ngrid[2]
if (fy > 0) or (fy == 0 and fz >= 0):
continue
phi_k[0, jj, kk] = phi_k[0, -jj, -kk].conjugate()
phi_k /= np.sqrt(2.)
phi_k[0, 0, 0] *= np.sqrt(2.)
phi_k = np.swapaxes(phi_k, 0, 2)
tmp = np.fft.irfftn(
phi_k, s=(ngrid[2], ngrid[1], ngrid[0])) * normFac
return np.swapaxes(tmp, 0, 2)
else:
# perform complex2complex FFT
return ifftn(phi_k * normFac) * phase
def poisson(self, rho=None, iband=1, ikpt=1, ispin=1, ngrid=None, norm=False):
"""
Given a charge density "rho", solve the Poisson equation with periodic
boundary condition to find out the corresponding electric potential and
field.
When "rho" is None, construct the charge density from a chosen Kohn-Sham
state, i.e. rho(r) = phi_n(r).conj() * phi_n(r).
In SI units, the real space Poisson equation:
\nabla^2 V = - \rho / \varepsilon_0
E = - \nabla V
the reciprocal space Poisson equation:
G**2 * V_q = - rho_q / \varepsilon_0
E_q = -1j * G * V_q
Note that the G=(0,0,0) entry is set to 1.0 instead of 0 to avoid
divergence.
"""
if rho is not None:
rho = np.asarray(rho)
ngrid = np.array(rho.shape, dtype=int)
assert ngrid.shape == (3,)
else:
ngrid = self._ngrid * 2
# normalization factor so that
# \sum_{ijk} | \phi_{ijk} | ^ 2 * volume / Ngrid = 1
normFac = np.prod(ngrid) / self._Omega
if self._lsoc:
rho = np.zeros(ngrid, dtype=float)
phi_spinor = self.wfc_r(iband=iband, ikpt=ikpt, ispin=ispin,
ngrid=ngrid, norm=norm)
# negative charges, hence the minus sign
for phi in phi_spinor:
rho += -(phi.conj() * phi).real * normFac
else:
phi = self.wfc_r(iband=iband, ikpt=ikpt, ispin=ispin,
ngrid=ngrid, norm=norm)
# negative charges, hence the minus sign
rho = -(phi.conj() * phi).real * normFac
fx = [ii if ii < ngrid[0] // 2 + 1 else ii - ngrid[0]
for ii in range(ngrid[0])]
fy = [jj if jj < ngrid[1] // 2 + 1 else jj - ngrid[1]
for jj in range(ngrid[1])]
fz = [kk if kk < ngrid[2] // 2 + 1 else kk - ngrid[2]
for kk in range(ngrid[2])]
# plane-waves: Reciprocal coordinate
# indexing = 'ij' so that outputs are of shape (ngrid[0], ngrid[1], ngrid[2])
Dx, Dy, Dz = np.meshgrid(fx, fy, fz, indexing='ij')
# plane-waves: Cartesian coordinate
Gx, Gy, Gz = np.tensordot(
self._Bcell * np.pi * 2, [Dx, Dy, Dz], axes=(0, 0))
# the norm squared of the G-vectors
G2 = Gx**2 + Gy**2 + Gz**2
# Note that the G=(0,0,0) entry is set to 1.0 instead of 0.
G2[0, 0, 0] = 1.0
# permittivity of vacuum [F / m]
_eps0 = 8.85418781762039E-12
# charge of one electron, in unit of Coulomb [1F * 1V]
_e = 1.6021766208E-19
# charge density in reciprocal space, rho in unit of [Coulomb / Angstrom**3]
rho_q = np.fft.fftn(1E10 * _e * rho / _eps0, norm='ortho')
# the electric potential in reciprocal space
# V_q = -rho_q / (-G2)
V_q = rho_q / G2
# the electric potential in real space in unit of 'Volt'
V_r = np.fft.ifftn(V_q, norm='ortho').real
# the electric field in x/y/z in real space in unit of 'Volt / Angstrom'
E_x = np.fft.ifftn(-1j * Gx * V_q, norm='ortho').real
E_y = np.fft.ifftn(-1j * Gy * V_q, norm='ortho').real
E_z = np.fft.ifftn(-1j * Gz * V_q, norm='ortho').real
return rho, V_r, E_x, E_y, E_z
def readBandCoeff(self, ispin=1, ikpt=1, iband=1, norm=False):
'''
Read the planewave coefficients of specified KS states.
'''
self.checkIndex(ispin, ikpt, iband)
rec = self.whereRec(ispin, ikpt, iband)
self._wfc.seek(rec * self._recl)
nplw = self._nplws[ikpt - 1]
dump = np.fromfile(self._wfc, dtype=self._WFPrec, count=nplw)
cg = np.asarray(dump, dtype=np.complex128)
if norm:
cg /= np.linalg.norm(cg)
return cg
def whereRec(self, ispin=1, ikpt=1, iband=1):
'''
Return the rec position for specified KS state.
'''
self.checkIndex(ispin, ikpt, iband)
rec = 2 + (ispin - 1) * self._nkpts * (self._nbands + 1) + \
(ikpt - 1) * (self._nbands + 1) + \
iband
return rec
def checkIndex(self, ispin, ikpt, iband):
'''
Check if the index is valid!
'''
assert 1 <= ispin <= self._nspin, 'Invalid spin index!'
assert 1 <= ikpt <= self._nkpts, 'Invalid kpoint index!'
assert 1 <= iband <= self._nbands, 'Invalid band index!'
def TransitionDipoleMoment(self, ks_i, ks_j):
'''
'''
return self.get_dipole_mat(ks_i, ks_j)
def get_dipole_mat(self, ks_i, ks_j):
'''
Dipole transition within the electric dipole approximation (EDA).
Please refer to this post for more details.
https://qijingzheng.github.io/posts/Light-Matter-Interaction-and-Dipole-Transition-Matrix/
The dipole transition matrix elements in the length gauge is given by:
<psi_nk | e r | psi_mk>
where | psi_nk > is the pseudo-wavefunction. In periodic systems, the
position operator "r" is not well-defined. Therefore, we first evaluate
the momentum operator matrix in the velocity gauge, i.e.
<psi_nk | p | psi_mk>
And then use simple "p-r" relation to apprimate the dipole transition
matrix element
-i⋅h
<psi_nk | r | psi_mk> = -------------- ⋅ <psi_nk | p | psi_mk>
m⋅(En - Em)
Apparently, the above equaiton is not valid for the case Em == En. In
this case, we just set the dipole matrix element to be 0.
################################################################################
NOTE that, the simple "p-r" relation only applies to molecular or finite
system, and there might be problem in directly using it for periodic
system. Please refer to this paper for more details.
"Relation between the interband dipole and momentum matrix elements in
semiconductors"
(https://journals.aps.org/prb/pdf/10.1103/PhysRevB.87.125301)
################################################################################
'''
# ks_i and ks_j are list containing spin-, kpoint- and band-index of the
# initial and final states
assert len(ks_i) == len(ks_j) == 3, 'Must be three indexes!'
assert ks_i[1] == ks_j[1], 'k-point of the two states differ!'
self.checkIndex(*ks_i)
self.checkIndex(*ks_j)
# energy differences between the two states
Emk = self._bands[ks_i[0]-1, ks_i[1]-1, ks_i[2]-1]
Enk = self._bands[ks_j[0]-1, ks_j[1]-1, ks_j[2]-1]
dE = Enk - Emk
# if energies of the initial and final states are the same, set the
# dipole transition moment zero.
if np.allclose(dE, 0.0):
return 0.0
moment_mat = self.get_moment_mat(ks_i, ks_j)
dipole_mat = -1j / (dE / (2*RYTOEV)) * moment_mat * AUTOA * AUTDEBYE
return Emk, Enk, dE, dipole_mat
def get_moment_mat(self, ks_i, ks_j):
'''
The momentum operator matrix between the pseudo-wavefunction in the
velocity gauge
<psi_nk | p | psi_mk> = hbar <u_nk | k - i nabla | u_mk>
The nabla operator matrix elements between the pseudo-wavefuncitons
<u_nk | k - i nabla | u_mk>
= \sum_G C_nk(G).conj() * C_mk(G) * [k + G]
where C_nk(G) is the plane-wave coefficients for | u_nk >.
'''
# ks_i and ks_j are list containing spin-, kpoint- and band-index of the
# initial and final states
assert len(ks_i) == len(ks_j) == 3, 'Must be three indexes!'
assert ks_i[1] == ks_j[1], 'k-point of the two states differ!'
self.checkIndex(*ks_i)
self.checkIndex(*ks_j)
# k-points in direct coordinate
k0 = self._kvecs[ks_i[1] - 1]
# plane-waves in direct coordinates
G0 = self.gvectors(ikpt=ks_i[1])
# G + k in Cartesian coordinates
Gk = np.dot(
G0 + k0, # G in direct coordinates
self._Bcell * TPI # reciprocal basis x 2pi
)
# plane-wave coefficients for initial (mk) and final (nk) states
CG_mk = self.readBandCoeff(*ks_i)
CG_nk = self.readBandCoeff(*ks_j)
ovlap = CG_nk.conj() * CG_mk
################################################################################
# Momentum operator matrix element between pseudo-wavefunctions
################################################################################
if self._lgam:
# for gamma-only, only half the plane-wave coefficients are stored.
# Moreover, the coefficients are multiplied by a factor of sqrt2
# G > 0 part
moment_mat_ps = np.sum(ovlap[:,None] * Gk, axis=0)
# For gamma-only version, add the other half plane-waves, G_ = -G
# G < 0 part, C(G) = C(-G).conj()
moment_mat_ps -= np.sum(
ovlap[:,None].conj() * Gk,
axis=0)
# remove the sqrt2 factor added by VASP
moment_mat_ps /= 2.0
elif self._lsoc:
moment_mat_ps = np.sum(
ovlap[:, None] * np.r_[Gk, Gk],
axis=0)
else:
moment_mat_ps = np.sum(
ovlap[:,None] * Gk, axis=0
)
return moment_mat_ps
def inverse_participation_ratio(self, norm=True):
'''
Calculate Inverse Paticipation Ratio (IPR) from the wavefunction. IPR is
a measure of the localization of Kohn-Sham states. For a particular KS
state \phi_j, it is defined as
\sum_n |\phi_j(n)|^4
IPR(\phi_j) = -------------------------
|\sum_n |\phi_j(n)|^2||^2
where n iters over the number of grid points.
'''
self.ipr = np.zeros((self._nspin, self._nkpts, self._nbands, 3))
for ispin in range(self._nspin):
for ikpt in range(self._nkpts):
for iband in range(self._nbands):
phi_j = self.wfc_r(ispin+1, ikpt+1, iband+1,
norm=norm)
phi_j_abs = np.abs(phi_j)
print('Calculating IPR of #spin %4d, #kpt %4d, #band %4d' %
(ispin+1, ikpt+1, iband+1))
self.ipr[ispin, ikpt, iband,
0] = self._kpath[ikpt] if self._kpath is not None else 0
self.ipr[ispin, ikpt, iband,
1] = self._bands[ispin, ikpt, iband]
self.ipr[ispin, ikpt, iband, 2] = np.sum(
phi_j_abs**4) / np.sum(phi_j_abs**2)**2
np.save('ipr.npy', self.ipr)
return self.ipr
def elf(self, kptw, ngrid=None, warn=True):
'''
Calculate the electron localization function (ELF) from WAVECAR.
The following formula was extracted from VASP ELF.F:
_
h^2 * 2 T.........kinetic energy
T = -2 --- Psi grad Psi T+TCORR...pos.definite kinetic energy
^ 2 m TBOS......T of an ideal Bose-gas
^
I am not sure if we need to times 2 here, use 1 in this
script.
_ (=infimum of T+TCORR)
1 h^2 2 DH........T of hom.non-interact.e- - gas
TCORR= - --- grad rho (acc.to Fermi)
2 2 m ELF.......electron-localization-function
_ 2
1 h^2 |grad rho|
TBOS = - --- ---------- D = T + TCORR - TBOS
4 2 m rho
_ \ 1
3 h^2 2/3 5/3 =====> ELF = ------------
DH = - --- (3 Pi^2) rho / D 2
5 2 m 1 + ( ---- )
DH
REF:
1. Nature, 371, 683-686 (1994)
2. Becke and Edgecombe, J. Chem. Phys., 92, 5397(1990)
3. M. Kohout and A. Savin, Int. J. Quantum Chem., 60, 875-882(1996)
4. http://www2.cpfs.mpg.de/ELF/index.php?content=06interpr.txt
'''
if warn:
warning = """
###################################################################
If you are using VESTA to view the resulting ELF, please rename the
output file as ELFCAR, otherwise there will be some error in the
isosurface plot!
When CHG*/PARCHG/*.vasp are read in to visualize isosurfaces and
sections, data values are divided by volume in the unit of bohr^3.
The unit of charge densities input by VESTA is, therefore, bohr^−3.
For LOCPOT/ELFCAR files, volume data are kept intact.
You can turn off this warning by setting "warn=False" in the "elf"
method.
###################################################################
"""
print(warning)
# the k-point weights
kptw = np.array(kptw, dtype=float)
assert kptw.shape == (self._nkpts,), "K-point weights must be provided \
to calculate charge density!"
# normalization
kptw /= kptw.sum()
if ngrid is None:
ngrid = self._ngrid * 2
else:
ngrid = np.array(ngrid, dtype=int)
assert ngrid.shape == (3,)
assert np.alltrue(ngrid >= self._ngrid), \
"Minium FT grid size: (%d, %d, %d)" % \
(self._ngrid[0], self._ngrid[1], self._ngrid[2])
fx = [ii if ii < ngrid[0] // 2 + 1 else ii - ngrid[0]