forked from VishnuDuttSharma/deep-multirobot-task
-
Notifications
You must be signed in to change notification settings - Fork 0
/
test_data_generation.py
665 lines (533 loc) · 27.3 KB
/
test_data_generation.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
import sys
import numpy as np
import argparse
from tqdm import tqdm
import pickle
import os
from dataloader.constants import *
np.random.seed(2343)
def check_symmetric(a, rtol=1e-05, atol=1e-08):
return np.allclose(a, a.T, rtol=rtol, atol=atol)
def get_adjacency_matrix(robot_pos, comm_range):
'''
Function to get the adjacency matrix )normalized by max eigen value)
Parameters
----------
robot_pos: Current locations for the robots
comm_range: Maximum communication range
Returns
-------
adj_mat: 2D array (symmetric)
'''
# Get the number of robots
num_rob = len(robot_pos)
# Create an empty num_robots x num_robots sized matrix
adj_mat = np.zeros((num_rob, num_rob))
# Iterate over rows
for i in range(0, num_rob):
# Iterate over columns
for j in range(i+1, num_rob):
# Set (i,j) and (j,i) entry to distance between robots
adj_mat[i,j] = adj_mat[j,i] = np.linalg.norm(robot_pos[i] - robot_pos[j])
# If distance between robots is out of communucation range, set it to 0
adj_mat[adj_mat > comm_range] = 0.
# Convert the non-zero values to 1 (distance between robots <= communication range)
adj_mat = (adj_mat > 0).astype(float)
# Normalize the adj matrix by its mox eigen value
max_eig_val = np.real(np.max(np.linalg.eigvals(adj_mat))) # abs to tackle complex numbers
# if max_eig_val == 0:
# print(robot_pos)
# print(adj_mat)
adj_mat = adj_mat.astype(float) / max_eig_val
# print(max_eig_val)
return adj_mat
def get_initial_pose(grid, comm_range):
"""
Function to generate initial positions for the robots.
For this we keep generating random locations on the grid till each robot
is connected to atleast 1 more robot
Parameters
----------
grid: 2D grid containing rewards/targets
Returns
-------
initial_pos: Vector of size NUM_ROBOTx2 containing positions for each robot
"""
# Find number of robots
num_robot = NUM_ROBOT
'''
# Get indices of those rows and columns which are not-occupied (=0 on grid)
rows, cols = np.where(grid <= 0)
# Convert to paired indices
indices = list(zip(rows, cols))
# Create empty vector for robot locations
initial_pos = np.zeros((num_robot, 2), dtype=int)
# Find candidate indices from the paired index list
cand_indices = np.random.choice(range(len(indices)), num_robot)
# Save the indices into the vector
for idx, indc in enumerate(cand_indices):
initial_pos[idx,:] = np.array(indices[indc])
'''
degree_lt_1 = True
is_symm = False
adj_is_nan = True
# removing constraint
# while(degree_lt_1):
while adj_is_nan:
# Generate random location for each robot
initial_pos = np.random.randint(low=0, high=grid.shape[0], size=(num_robot, 2))
# get corresponding adjacency matrix
adj_mat = get_adjacency_matrix(initial_pos, comm_range)
adj_is_nan = np.isnan(adj_mat).any()
# Check minimum degree. (degree_lt_1 = is any robot connected to 0 robots)
# degree_lt_1 = ((adj_mat > 0).sum(axis=0) == 0).any()
# if not degree_lt_1:
# print('Generating again')
# Remove the rewards from the grid at robots' locations
for pos in initial_pos:
grid[pos[0], pos[1]] = 0
return initial_pos, adj_mat
def get_reward_grid(height, width, reward_thresh=REWARD_THRESH):
"""
Generate reward grid/environment to be explores
Parameters
----------
height: Height of the grid
width: Width of the grid
Returns
-------
grid containign reward
"""
# Random grid (10 times the actuial size)
reward_grid = np.random.randint(1,100, size=(10*height, 10*width)) / 100.
# downsample to the original size
reward_grid_orig = reward_grid[::10, ::10]
# copying , not necessary. doesn't affect
reward_grid = reward_grid_orig.copy()
# Keep only those values which are above reward_thresh. Helps in making the rewards sparse
mask = reward_grid > reward_thresh
return mask.astype(int)
def calculate_reward(grid, robot_pos, action_list, fov=FOV, get_mask=False):
"""
Function to calculate the reward calculated by all the robots based on an action vector.
For this we first update locations of each robot, then create a mask which has 1s only around the new robots locations (square of side (2*FOV+1) for each robot)
Parameters
----------
grid: 2D grid containing rewards
robot_pos: Current position for each robot on the grid (NUM_ROBOTx2 size vector)
action_list: List of action for each robot
Returns
-------
total_reward: Total reward calculated by the robots using action_list (the action vector)
"""
grid_size = grid.shape[0]
# Convert the integer actions to 2D vector of location differences using DIR_DICT dictionary
act = np.array([DIR_DICT[k] for k in action_list])
# Calcuate new locations for each robot
new_pos = robot_pos + act
# Make sure that the new locatiosn are within the grid
new_pos = new_pos.clip(min=0, max=grid_size-1)
# Initialize a mask of same shape as grid
mask = np.zeros(grid.shape, dtype=int)
# iterate over each robot position
for c_pos, n_pos in zip(robot_pos, new_pos):
# Set the values to 1 in the mask at each robot's fov
# also make sure that the indices do not go out of grid
# Calculate the bounding box ranges for the box generated by robot moving from the current location (c_pos) to new location (n_pos)
# This box has a padding of size FOV on each size
r_lim_lef = max(0, min(c_pos[0]-fov, n_pos[0]-fov))
c_lim_top = max(0, min(c_pos[1]-fov, n_pos[1]-fov))
r_lim_rgt = min(max(c_pos[0]+fov+1, n_pos[0]+fov+1), grid_size)
c_lim_bot = min(max(c_pos[1]+fov+1, n_pos[1]+fov+1), grid_size)
# Set the locations withing mask (i.e. witing robot's vision when it moved) to 1
mask[r_lim_lef:r_lim_rgt, c_lim_top:c_lim_bot] = 1
if get_mask:
return mask
# Find total reward as number of 1s in the masked grid
total_reward = np.sum(grid * mask)
return total_reward
def greedy_action_finder(grid, robot_pos, fov):
'''
Function to greedily find actions for all robot.
For a robot, find an action which results in covring most number of targets.
Remove the targets from the grid.
Repeat for next robot.
Parameters
----------
grid: 2D grid containing rewards
robot_pos: Current position for each robot on the grid (NUM_ROBOTx2 size vector)
fov: Field of View in each direction. FOV=2 results in 5x5 grid centered at robot location
Returns
-------
robot_acts: List of actions for each robot
reward: Reward over the greedy
'''
grid_size = grid.shape[0]
# Copy teh original grid for later use
orig_grid = grid.copy()
# List of actions
act_list = ['Stay', 'Up', 'Down', 'Left', 'Right']
# List to save the actiosn for each robot
robot_acts = []
# Array to save the robot locations
new_pos = np.zeros(robot_pos.shape, dtype=robot_pos.dtype)
# Iterate over each robot
for i_rob in range(len(robot_pos)):
# List to save reward for each action
reward_list = []
# iterate over each action
for i_act, act in enumerate(act_list):
# Copy the grid to avoid overwriting
test_grid = grid.copy()
# Move robot to new location according to the action
r_pos = robot_pos[i_rob] + DIR_DICT[i_act]
# Keep the robot within the grid by limiting x-y coordinated in range [9,grid size)
r_pos = r_pos.clip(min=0, max=grid_size-1)
# Find reward. It is the number of total targets in robot's FOV
reward = np.sum(test_grid[max(0,r_pos[0]-fov):min(r_pos[0]+FOV+1,grid_size),
max(0,r_pos[1]-fov):min(r_pos[1]+FOV+1,grid_size)])
# Add the reward to teh list
reward_list.append(reward)
# Find the best action = argmax(reward list)
best_act = np.argmax(reward_list)
# Save this action as the Robot's action as per greedy algorithm
robot_acts.append(best_act)
# Apply action to the currect robot. Move to new location
r_pos = robot_pos[i_rob] + DIR_DICT[best_act]
# Save the new location
new_pos[i_rob] = r_pos
# Remove the targets within Robot's field of view
test_grid[max(0,r_pos[0]-FOV):min(r_pos[0]+fov+1,grid_size),
max(0,r_pos[1]-FOV):min(r_pos[1]+fov+1,grid_size)] = 0
# Update the grid
grid = test_grid.copy()
# Find the reward of the actions
reward = calculate_reward(orig_grid, robot_pos, robot_acts)
# return robot_acts, new_pos, reward
return robot_acts, reward
def random_action_finder(grid, robot_pos, sample_size):
'''
Function to randomly sample action vectors (an action for each robot) and return the best one
Parameters
----------
grid: 2D Grid
robot_pos: Current location of all the robots (NUM_ROBOTx2 size vector)
sample_size: Number of action vectors to sample
Returns
-------
Best performing action vector
Corresponding reward
'''
num_robot = robot_pos.shape[0]
# Generate random actions
action_space = np.random.randint(low=0,high=len(DIR_DICT.keys()), size=(sample_size, num_robot))
# List to save rewards for all actions
reward_list = []
# Iterate over each action in the space
for i_samp in range(sample_size):
# Calculate reward over an action vector
reward = calculate_reward(grid, robot_pos, action_space[i_samp])
# Save the reward to the list
reward_list.append(reward)
# Get the index for the highest reward
best_samp = np.argmax(reward_list)
# Return best action vector and the reward
return action_space[best_samp], reward_list[best_samp]
def centralized_greedy_action_finder(grid, robot_pos, fov):
'''
Function to greedily find actions for all robot.
For a robot, find an action which results in covring most number of targets.
Remove the targets from the grid.
Repeat for next robot.
Parameters
----------
grid: 2D grid containing rewards
robot_pos: Current position for each robot on the grid (NUM_ROBOTx2 size vector)
fov: Field of View in each direction. FOV=2 results in 5x5 grid centered at robot location
Returns
-------
robot_acts: List of actions for each robot
reward: Reward over the greedy
'''
grid_size = grid.shape[0]
# Get the number of robots
n_rob = robot_pos.shape[0] #NUM_ROBOT
# Copy the original grid for later use
orig_grid = grid.copy()
# List of actions
act_list = ['Stay', 'Up', 'Down', 'Left', 'Right']
# List to save the actions for each robot
robot_acts = [None]*n_rob
# Array to save the robot locations
new_pos = np.zeros(robot_pos.shape, dtype=robot_pos.dtype)
# List to create track of the robots already taken care of
visited = [] # S
# mask to help with calucating the reward
mask = np.zeros(grid.shape, dtype=int)
for k in range(n_rob):
# create the mask with visited robots
if len(visited) > 0:
# mask the areas covered by the last robot which was added to the set
last_robot_id = visited[-1] # Last added robot's ID
c_pos = robot_pos[last_robot_id] # current pos
n_pos = c_pos + DIR_DICT[ robot_acts[last_robot_id] ]
# Keep the robot within the grid by limiting x-y coordinated in range [0,grid size)
n_pos = n_pos.clip(min=0, max=grid_size-1)
# Calculate the bounding box ranges for the box generated by robot moving from the current location (c_pos) to new location (n_pos)
# This box has a padding of size FOV on each size
r_lim_lef = max(0, min(c_pos[0]-fov, n_pos[0]-fov))
c_lim_top = max(0, min(c_pos[1]-fov, n_pos[1]-fov))
r_lim_rgt = min(max(c_pos[0]+fov+1, n_pos[0]+fov+1), grid_size)
c_lim_bot = min(max(c_pos[1]+fov+1, n_pos[1]+fov+1), grid_size)
# Set the locations withing mask (i.e. witing robot's vision when it moved) to 1
mask[r_lim_lef:r_lim_rgt, c_lim_top:c_lim_bot] = 1
# matrix to save the f values, size: NUM_ROBOT x NUM_ACTIONS
f_mat = -1*np.ones((n_rob, len(act_list)))
for i_rob in range(n_rob):
# If robot already visited
if i_rob in visited:
continue
# List to track rewards for each action
temp_reward_list = []
for i_act, act in enumerate(act_list):
# Copy the mask to avoid overwriting
temp_mask = mask.copy()
# copy current pos
c_pos = robot_pos[i_rob]
# Move robot to new location according to the action
n_pos = c_pos + DIR_DICT[i_act]
# Keep the robot within the grid by limiting x-y coordinated in range [0,grid size)
n_pos = n_pos.clip(min=0, max=grid_size-1)
# Calculate the bounding box ranges for the box generated by robot moving from the current location (c_pos) to new location (n_pos)
# This box has a padding of size FOV on each size
r_lim_lef = max(0, min(c_pos[0]-fov, n_pos[0]-fov))
c_lim_top = max(0, min(c_pos[1]-fov, n_pos[1]-fov))
r_lim_rgt = min(max(c_pos[0]+fov+1, n_pos[0]+fov+1), grid_size)
c_lim_bot = min(max(c_pos[1]+fov+1, n_pos[1]+fov+1), grid_size)
# Set the locations withing mask (i.e. witing robot's vision when it moved) to 1
temp_mask[r_lim_lef:r_lim_rgt, c_lim_top:c_lim_bot] = 1
# Find reward. It is the number of total targets in robot's FOV
reward = np.sum(grid * temp_mask)
# Add the reward to teh list
temp_reward_list.append(reward)
# Save it to f
f_mat[i_rob, i_act] = reward
'''
# Find the best action and reward
best_act = np.argmax(temp_reward_list)
best_rwd = temp_reward_list[best_act]
# Save it to f
f_mat[i_rob, best_act] = best_rwd
'''
# initialiize f with -1, and update for all actions for the rotbos (move f up in th loop)
# find which robot provides best reward
best_rob, best_act = np.where(f_mat == np.max(f_mat))
# if multiple robots with same rewards exist, pick first of them not alread
if len(best_rob):
best_rob = best_rob[0]
best_act = best_act[0]
# Add robot to visited list at the end
visited.append(best_rob)
# Add the corresponding action to the output list
robot_acts[best_rob] = best_act
# Testing: copy the old value of reeward
old_rwd = np.max(temp_reward_list)
# Find the reward of the actions (use it as a test here, check with the last best reward)
reward = calculate_reward(orig_grid, robot_pos, robot_acts)
# check if they are same (Must be)
assert reward == old_rwd
# return robot_acts, new_pos, reward
return robot_acts, reward
def get_features(grid, robot_pos, fov=FOV, step=STEP, target_feat_size=10, robot_feat_size=10, comm_range=COMM_RANGE):
'''
Function to get the features (local position of robot in fov)
Parameters
----------
grid: 2D grid containing rewards
robot_pos: Current position for each robot on the grid (NUM_ROBOTx2 size vector)
fov: Field of View in each direction. FoV=2 results in 5x5 grid centered at robot location
step: Step size of the robots
target_feat_size: For each robot, maximum number of target in FoV to be considered in the feature vector
robot_feat_size: For each robot, Maximum number of robots in FoV to be considered in the feature vector
Returns
-------
feat_vec: Feature vector containing location of targets and robots in local FoV of each robot. Size: num_robot x (target_feat_size + robot_feat_size)
'''
grid_size = grid.shape[0]
# Get number of robots
num_rob = robot_pos.shape[0]
# Create an empty vector for features. size: N_Robot x (targets + robot) x 2
feat_vec = -1*np.ones((num_rob, target_feat_size + robot_feat_size, 2))
# Iterate over each robot
for i_rob in range(num_rob):
# copy current pos
c_pos = robot_pos[i_rob]
# Calculate the bounding box ranges for the box generated by robot moving from the current location (c_pos) to new location (n_pos)
# This box has a padding of size FOV on each size. We add step to consider effect of motion in all directions
r_lim_lef = max(0, c_pos[0]-fov-step)
c_lim_top = max(0, c_pos[1]-fov-step)
r_lim_rgt = min(c_pos[0]+fov+step+1, grid_size)
c_lim_bot = min(c_pos[1]+fov+step+1, grid_size)
# create the mask with 1s in robot's FOV
mask = np.zeros(grid.shape)
mask[r_lim_lef:r_lim_rgt, c_lim_top:c_lim_bot] = 1
# Get locatiosn where a target is present
rows, cols = np.where(mask*grid > 0)
# get relative position and normalize. (.T returns the tranpose of the matrix)
rel_pos = np.array([rows - c_pos[0], cols - c_pos[1]]).T / (fov+step)
# Get the sorting indices (lowest to highest). Sort based on on relative distance
indices = np.argsort(np.linalg.norm(rel_pos, axis=1))
# Save the relative normalized locations of the targets in feature vector.
feat_vec[i_rob, 0:min(target_feat_size, len(indices)), :] = rel_pos[indices][0:min(target_feat_size, len(indices))]
### For robots
# Get relative location on all robots
rel_pos = robot_pos - c_pos
# Get the subset containing only those robots which are within robot's FOV. Also normalize them
# rel_pos_subset = rel_pos[ (np.abs(rel_pos[:,0]) <= (fov+step)) & (np.abs(rel_pos[:,1]) <= (fov+step))] / (fov+step)
rel_pos_subset = rel_pos[np.linalg.norm(rel_pos, axis=1) <= comm_range] / float(comm_range)
# Get the sorting indices (lowest to highest). Sort based on on relative distance
indices = np.argsort(np.linalg.norm(rel_pos_subset, axis=1))
# First elemnt (index=0) is the robot it self. Thus remove it from the list
rel_pos = rel_pos_subset[indices] #rel_pos[indices]
rel_pos = rel_pos[1:]
indices = indices[1:]
# Save into the feature vector
feat_vec[i_rob, target_feat_size:target_feat_size+min(robot_feat_size, len(indices)), :] = rel_pos[:min(robot_feat_size, len(indices))]
# 20 + 10, 2, 60
return feat_vec
def get_rect_features(grid, robot_pos, fov=FOV, step=STEP, target_feat_size=10, robot_feat_size=10, comm_range=COMM_RANGE):
'''
Function to get the features (local position of robot in fov) using only traversible paarts of the environement (center not included)
Parameters
----------
grid: 2D grid containing rewards
robot_pos: Current position for each robot on the grid (NUM_ROBOTx2 size vector)
fov: Field of View in each direction. FoV=2 results in 5x5 grid centered at robot location
step: Step size of the robots
target_feat_size: For each robot, maximum number of target in FoV to be considered in the feature vector
robot_feat_size: For each robot, Maximum number of robots in FoV to be considered in the feature vector
Returns
-------
feat_vec: Feature vector containing location of targets and robots in local FoV of each robot. Size: num_robot x (target_feat_size + robot_feat_size)
'''
grid_size = grid.shape[0]
# Get number of robots
num_rob = robot_pos.shape[0]
# Create an empty vector for features. size: N_Robot x (targets + robot) x 2
feat_vec = -1*np.ones((num_rob, target_feat_size + robot_feat_size, 2))
# Iterate over each robot
for i_rob in range(num_rob):
# copy current pos
c_pos = robot_pos[i_rob]
mask = np.zeros(grid.shape)
#### Horizontal mask ######
# Calculate the bounding box ranges for the box generated by robot moving from the current location (c_pos) to new location (n_pos)
# This box has a padding of size FOV on each size. We add step to consider effect of motion in all directions
r_lim_lef = max(0, c_pos[0]-fov)
c_lim_top = max(0, c_pos[1]-fov-step)
r_lim_rgt = min(c_pos[0]+fov+1, grid_size)
c_lim_bot = min(c_pos[1]+fov+step+1, grid_size)
# create the mask with 1s in robot's FOV
mask[r_lim_lef:r_lim_rgt, c_lim_top:c_lim_bot] = 1
#### Vertical mask ######
# Calculate the bounding box ranges for the box generated by robot moving from the current location (c_pos) to new location (n_pos)
# This box has a padding of size FOV on each size. We add step to consider effect of motion in all directions
r_lim_lef = max(0, c_pos[0]-fov-step)
c_lim_top = max(0, c_pos[1]-fov)
r_lim_rgt = min(c_pos[0]+fov+step+1, grid_size)
c_lim_bot = min(c_pos[1]+fov+1, grid_size)
# create the mask with 1s in robot's FOV
mask[r_lim_lef:r_lim_rgt, c_lim_top:c_lim_bot] = 1
#### Center mask remove ######
# Calculate the bounding box ranges for the box generated by robot moving from the current location (c_pos) to new location (n_pos)
# This box has a padding of size FOV on each size. We add step to consider effect of motion in all directions
r_lim_lef = max(0, c_pos[0]-fov)
c_lim_top = max(0, c_pos[1]-fov)
r_lim_rgt = min(c_pos[0]+fov+1, grid_size)
c_lim_bot = min(c_pos[1]+fov+1, grid_size)
# create the mask with 1s in robot's FOV
mask[r_lim_lef:r_lim_rgt, c_lim_top:c_lim_bot] = 0
# Get locatiosn where a target is present
rows, cols = np.where(mask*grid > 0)
# get relative position and normalize. (.T returns the tranpose of the matrix)
rel_pos = np.array([rows - c_pos[0], cols - c_pos[1]]).T / (fov+step)
# Get the sorting indices (lowest to highest). Sort based on on relative distance
indices = np.argsort(np.linalg.norm(rel_pos, axis=1))
# Save the relative normalized locations of the targets in feature vector.
feat_vec[i_rob, 0:min(target_feat_size, len(indices)), :] = rel_pos[indices][0:min(target_feat_size, len(indices))]
### For robots
# Get relative location on all robots
rel_pos = robot_pos - c_pos
# Get the subset containing only those robots which are within robot's FOV. Also normalize them
# rel_pos_subset = rel_pos[ (np.abs(rel_pos[:,0]) <= (fov+step)) & (np.abs(rel_pos[:,1]) <= (fov+step))] / (fov+step)
rel_pos_subset = rel_pos[np.linalg.norm(rel_pos, axis=1) <= comm_range] / float(comm_range)
# Get the sorting indices (lowest to highest). Sort based on on relative distance
indices = np.argsort(np.linalg.norm(rel_pos_subset, axis=1))
# First elemnt (index=0) is the robot it self. Thus remove it from the list
rel_pos = rel_pos_subset[indices] #rel_pos[indices] ##CORRECTED
rel_pos = rel_pos[1:]
indices = indices[1:]
# Save into the feature vector
feat_vec[i_rob, target_feat_size:target_feat_size+min(robot_feat_size, len(indices)), :] = rel_pos[:min(robot_feat_size, len(indices))]
return feat_vec
def generate_data(data_size, mode='square'):
grid_list = []
robot_pos_list = []
feat_list, adj_list, label_list = [], [], []
time_list = []
action_list = []
for _ in range(data_size):
grid = get_reward_grid(height=HEIGHT, width=WIDTH, reward_thresh=REWARD_THRESH)
robot_pos, adj_mat = get_initial_pose(grid, comm_range=COMM_RANGE)
cent_act, cent_rwd = centralized_greedy_action_finder(grid, robot_pos, fov=FOV)
action_vec = cent_act
'''
rand_act, rand_rwd = random_action_finder(grid, robot_pos, SAMPLE_SIZE)
if cent_rwd > rand_rwd:
action_vec = cent_act
else:
action_vec = rand_act
'''
if mode == 'square':
feat_vec = get_features(grid, robot_pos, fov=FOV, step=STEP, target_feat_size=NUM_TGT_FEAT, robot_feat_size=NUM_ROB_FEAT)
if mode == 'rect':
feat_vec = get_rect_features(grid, robot_pos, fov=FOV, step=STEP, target_feat_size=NUM_TGT_FEAT, robot_feat_size=NUM_ROB_FEAT)
grid_list.append(grid)
robot_pos_list.append(robot_pos)
feat_list.append(feat_vec)
adj_list.append(adj_mat)
action_list.append(action_vec)
action_one_hot = np.zeros((NUM_ROBOT, len(DIR_LIST)), dtype=np.uint8)
action_one_hot[np.arange(NUM_ROBOT), action_vec] = 1
label_list.append(action_one_hot)
return np.array(grid_list), np.array(robot_pos_list), np.array(time_list), np.array(action_list), [np.array(feat_list), np.array(adj_list), np.array(label_list)]
if __name__ == '__main__':
argparser = argparse.ArgumentParser(description="This module generates data for testing target coverage. The data is saved as pickle files and includes grid+target configuration, robot positions, action slected by global centralized greedy algorithm, time taken to choose those actions, and the data for GNN predictions (features, adjacency matrix, labels)")
argparser.add_argument('--batch_size', type=int, default=1000, help="Number of test instances")
argparser.add_argument('--save_path', type=str, default=None, help="Location whther data will be saved")
argparser.add_argument('--mode', type=str, default='rect', help="Type of FoV, `rect`(default) or `sqaure`")
args = argparser.parse_args()
print(f'Batch Size: {args.batch_size}')
print(f'Data Path: {args.save_path}')
print(f'Model: {args.mode}')
print('--------------- CONFIG ---------------')
print(f'Number of robots: {NUM_ROBOT}')
print(f'Height: {HEIGHT}')
print(f'Width: {WIDTH}')
print(f'Reward thresh: {REWARD_THRESH}')
print(f'Comm Range: {COMM_RANGE}')
print(f'FoV: {FOV}')
print(f'Step size: {STEP}')
print(f'#Robot in target: {NUM_TGT_FEAT}')
print(f'#Robot in feat: {NUM_ROB_FEAT}')
print('--------------------------------------')
# for i in tqdm(range(100)):
# pickle.dump(generate_data(args.batch_size), open(f'{args.save_path}/data_{i+1}.pkl', 'wb'))
grid_data, robot_pos_data, time_data, action_data, model_data = generate_data(args.batch_size, args.mode)
os.makedirs(args.save_path, exist_ok = True)
pickle.dump(grid_data, open(f'{args.save_path}/grid_data.pkl', 'wb'))
pickle.dump(robot_pos_data, open(f'{args.save_path}/robot_pos_data.pkl', 'wb'))
pickle.dump(time_data, open(f'{args.save_path}/time_data.pkl', 'wb'))
pickle.dump(action_data, open(f'{args.save_path}/action_data.pkl', 'wb'))
pickle.dump(model_data, open(f'{args.save_path}/model_data.pkl', 'wb'))
print('Done!')