forked from VishnuDuttSharma/deep-multirobot-task
-
Notifications
You must be signed in to change notification settings - Fork 0
/
test_model_loader.py
132 lines (90 loc) · 4.34 KB
/
test_model_loader.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
import sys
sys.path.append('/home/vishnuds/baxterB/multi_robot/deep-multirobot-task/')
import argparse
from utils.config import *
import torch
import random
import numpy as np
from agents import *
from graphs.models.coverageplanner import CoveragePlannerNet
import time
np.random.seed(1337)
random.seed(1337)
# parse the path of the json config file
arg_parser = argparse.ArgumentParser(description="This module provides utilities for loading the pretrained models")
arg_parser.add_argument(
'config',
metavar='config_json_file',
default='None',
help='The Configuration file in json format')
arg_parser.add_argument('--mode', type=str, default='test')
arg_parser.add_argument('--tgt_feat', type=int, default=20)
arg_parser.add_argument('--rbt_feat', type=int, default=10)
arg_parser.add_argument('--num_agents', type=int, default=20)
arg_parser.add_argument('--trained_num_agents', type=int, default=20)
arg_parser.add_argument('--nGraphFilterTaps', type=int, default=2)
arg_parser.add_argument('--max_epoch', type=int, default=1500)
arg_parser.add_argument('--learning_rate', type=int, default=0.005)
arg_parser.add_argument('--log_time_trained', type=str, default='')
arg_parser.add_argument('--map_type', type=int, default=0)
arg_parser.add_argument('--best_epoch', type=int, default=None)
arg_parser.add_argument('--num_testset', type=int, default=4500)
arg_parser.add_argument('--test_epoch', type=int, default=0)
arg_parser.add_argument('--lastest_epoch', action='store_true', default=False)
arg_parser.add_argument('--con_train', action='store_true', default=False)
arg_parser.add_argument('--test_general', action='store_true', default=False)
arg_parser.add_argument('--train_TL', action='store_true', default=False)
arg_parser.add_argument('--Use_infoMode', type=int, default=0)
arg_parser.add_argument('--log_anime', action='store_true', default=False)
arg_parser.add_argument('--rate_maxstep', type=int, default=2)
arg_parser.add_argument('--commR', type=int, default=6)
def get_prediction(config, feat_raw, adj_mat, device):
pred_time_list = []
pred_action_list = []
numFeature = (config.tgt_feat + config.rbt_feat )
feat = feat_raw
feat_reshaped = feat[:,:,:numFeature,:].reshape(feat.shape[0], feat.shape[1], numFeature*2, order='F')
model = load_model(config)
model.to(device);
batch_size = 1
for i in range(0,feat.shape[0],batch_size):
with torch.no_grad():
start_index = i
end_index = i + batch_size
start_time = time.time()
inputGPU = torch.FloatTensor(feat_reshaped[start_index:end_index]).to(device)
gsoGPU = torch.FloatTensor(adj_mat[start_index:end_index]).to(device)
# model prediction
model.addGSO(gsoGPU)
predict = model(inputGPU)
acts = predict.detach().cpu().numpy().argmax(axis=2)
pred_time_list.append(time.time() - start_time)
pred_action_list.append(acts)
return pred_action_list, pred_time_list
def load_model(config):
timeid = config.log_time_trained
model = CoveragePlannerNet(config)
filename = f'{config.save_data}/experiments/dcpOE_map20x20_rho1_{config.trained_num_agents}Agent/K{config.nGraphFilterTaps}_HS0/{timeid}/checkpoints/checkpoint_{config.max_epoch}.pth.tar'
print(f'loading model from: {filename}')
checkpoint = torch.load(filename, map_location='cuda:{}'.format(config.gpu_device))
model.load_state_dict(checkpoint['state_dict'])
model = model.to(config.device)
model.eval()
print('Ready for prediction\n\t pred_action_list, pred_time_list = get_prediction(config, feat_raw, adj_mat, device)')
return model
if __name__ == "__main__":
####################################################################################################################
# args = arg_parser.parse_args(['configs/coverageTask_20rob_FIX_6FOV_20STEP_10COMM_3layer_4filtertap_GNN2layer_32_128_ep1500.json'])
args = arg_parser.parse_args()
config = process_config(args)
'''
config['device'] = torch.device('cuda:0')
config.mode = 'test'
config.num_agents = 20
config.tgt_feat = 20
config.rbt_feat = 10
config.max_epoch = 1500
config.learning_rate = 0.005
config.nGraphFilterTaps = 2 #4
'''
model = load_model(config)