forked from microsoft/SymCrypt
-
Notifications
You must be signed in to change notification settings - Fork 0
/
3des.c
832 lines (693 loc) · 27.3 KB
/
3des.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
//
// 3des.c Routines for DES and 3DES
//
// Copyright (c) Microsoft Corporation. Licensed under the MIT license.
//
// This is an updated implementation that is carefully reviewed to be fully copyrighted by
// Microsoft. Our previous implementation was partially based on a very old public domain
// implementation.
// According to Andrew Tucker (atucker) there was a claim many years ago about the copyright of
// our DES code. Working with LCA (legal) it was determined that the DES implementation in RSA32.lib
// was a Microsoft derivitive of a public-domain implementation, and therefore is clear of
// any IP issues. To avoid any further claims we have now scrubbed this implementation from all
// copyrightable elements derived from outside sources.
//
// We take non-copyrightable items from the old implementations such as
// - lookup tables
// - algorithm for various bit permutations
// - Any variable & function names that are already MS-generated.
// - Other MS-generated code elements (e.g. SymCrypt integration)
// Some of the considerations we made are:
// Most of the functionality of DES is required by the FIPS standard and there is not much
// choice on how to code it; elements required by the standard are not copyright protected.
// The lookup tables themselves are not copyrightable as they have no artistic expression.
// The format of the lookup tables is almost completely determined by the standard and the algorithm
// used to access them. Any further layout and structure are all standard C conventions.
// Algorithm tricks such as Hoey's IP implementation are not copyrightable but are patentable.
// Fortunately all the techniques we use have been around long enough that any patents have expired.
//
//
// Feb 2018, Niels Ferguson
//
#include "precomp.h"
//
// Tables to describe the DES and 3DES block ciphers so that the generic
// chaining mode functions can use them.
// We have no optimized mode-specific code as the DES block is so slow that there is
// very little to be gained.
//
const SYMCRYPT_BLOCKCIPHER SymCrypt3DesBlockCipher_default = {
SymCrypt3DesExpandKey, // PSYMCRYPT_BLOCKCIPHER_EXPAND_KEY expandKeyFunc;
SymCrypt3DesEncrypt, // PSYMCRYPT_BLOCKCIPHER_CRYPT encryptFunc;
SymCrypt3DesDecrypt, // PSYMCRYPT_BLOCKCIPHER_CRYPT decryptFunc;
NULL, // PSYMCRYPT_BLOCKCIPHER_CRYPT_ECB ecbEncryptFunc;
NULL, // PSYMCRYPT_BLOCKCIPHER_CRYPT_ECB ecbDecryptFunc;
NULL, // PSYMCRYPT_BLOCKCIPHER_CRYPT_MODE cbcEncryptFunc;
NULL, // PSYMCRYPT_BLOCKCIPHER_CRYPT_MODE cbcDecryptFunc;
NULL, // PSYMCRYPT_BLOCKCIPHER_MAC_MODE cbcMacFunc;
NULL, // PSYMCRYPT_BLOCKCIPHER_CRYPT_MODE ctrMsbFunc;
NULL, // PSYMCRYPT_BLOCKCIPHER_AEADPART_MODE gcmEncryptPartFunc;
NULL, // PSYMCRYPT_BLOCKCIPHER_AEADPART_MODE gcmDecryptPartFunc;
8, // SIZE_T blockSize;
sizeof( SYMCRYPT_3DES_EXPANDED_KEY ), // SIZE_T expandedKeySize; // = sizeof( SYMCRYPT_XXX_EXPANDED_KEY )
};
const SYMCRYPT_BLOCKCIPHER SymCryptDesBlockCipher_default = {
SymCryptDesExpandKey, // PSYMCRYPT_BLOCKCIPHER_EXPAND_KEY expandKeyFunc;
SymCryptDesEncrypt, // PSYMCRYPT_BLOCKCIPHER_CRYPT encryptFunc;
SymCryptDesDecrypt, // PSYMCRYPT_BLOCKCIPHER_CRYPT decryptFunc;
NULL, // PSYMCRYPT_BLOCKCIPHER_CRYPT_ECB ecbEncryptFunc;
NULL, // PSYMCRYPT_BLOCKCIPHER_CRYPT_ECB ecbDecryptFunc;
NULL, // PSYMCRYPT_BLOCKCIPHER_CRYPT_MODE cbcEncryptFunc;
NULL, // PSYMCRYPT_BLOCKCIPHER_CRYPT_MODE cbcDecryptFunc;
NULL, // PSYMCRYPT_BLOCKCIPHER_MAC_MODE cbcMacFunc;
NULL, // PSYMCRYPT_BLOCKCIPHER_CRYPT_MODE ctrMsbFunc;
NULL, // PSYMCRYPT_BLOCKCIPHER_AEADPART_MODE gcmEncryptPartFunc;
NULL, // PSYMCRYPT_BLOCKCIPHER_AEADPART_MODE gcmDecryptPartFunc;
8, // SIZE_T blockSize;
sizeof( SYMCRYPT_DES_EXPANDED_KEY ), // SIZE_T expandedKeySize; // = sizeof( SYMCRYPT_XXX_EXPANDED_KEY )
};
const PCSYMCRYPT_BLOCKCIPHER SymCrypt3DesBlockCipher = &SymCrypt3DesBlockCipher_default;
const PCSYMCRYPT_BLOCKCIPHER SymCryptDesBlockCipher = &SymCryptDesBlockCipher_default;
extern SYMCRYPT_ALIGN_AT(256) const UINT32 SymCryptDesSpbox[8][64]; // Combined S and P tables
extern SYMCRYPT_ALIGN_AT(256) const UINT32 SymCryptDesKeySelect[8][64];
//
// The SWAP_BITS_WITHIN_UINT32 macro swaps bits within a UINT32 value
// SWAP_BITS_WITHIN_UINT32( _value, _shift, _mask )
// swaps each bit in _value selected by _mask with the bit _shift positions to the left
// Thus it swaps (_value & _mask) with (_value & (_mask << _shift))
//
#define SWAP_BITS_WITHIN_UINT32( _value, _shift, _mask ) \
{ \
UINT32 _tmp; \
_tmp = ((_value) ^ ((_value) >> (_shift))) & (_mask ); \
_value = (_value) ^ _tmp ^ (_tmp << (_shift)); \
}
//
// The SWAP_BITS_BETWEEN_UINT32 macro swaps bits between two UINT32 values
// SWAP_BITS_BETWEEN_UINT32( _v1, _v2, _shift, _mask )
// swaps bits in _v1 selected by _mask with bits in _v2 selected by _mask << _shift
//
#define SWAP_BITS_BETWEEN_UINT32( _v1, _v2, _shift, _mask ) \
{ \
UINT32 _tmp; \
_tmp = ((_v1) ^ ((_v2) >> (_shift))) & (_mask); \
_v1 ^= _tmp; \
_v2 ^= (_tmp << (_shift )); \
}
//
// For each round, a bit that states whether the key schedule shift registers are clocked twice
// The data is straight from the standard.
//
static const BYTE SymCryptDesDoubleShift[16]={0,0,1,1,1,1,1,1,0,1,1,1,1,1,1,0};
//////////////////////////
// DES
// We just implement DES as 3DES.
// People using DES have bigger problems than bad performance.
//
SYMCRYPT_ERROR
SYMCRYPT_CALL
SymCryptDesExpandKey(
_Out_ PSYMCRYPT_DES_EXPANDED_KEY pExpandedKey,
_In_reads_( cbKey ) PCBYTE pbKey,
SIZE_T cbKey )
{
if( cbKey != 8 )
{
//
// cbKey should be a compile-time constant in most cases,
// so this should be optimized away
//
return SYMCRYPT_WRONG_KEY_SIZE;
}
return SymCrypt3DesExpandKey( &pExpandedKey->threeDes, pbKey, cbKey );
}
VOID
SYMCRYPT_CALL
SymCryptDesEncrypt(
_In_ PCSYMCRYPT_DES_EXPANDED_KEY pExpandedKey,
_In_reads_( SYMCRYPT_DES_BLOCK_SIZE ) PCBYTE pbSrc,
_Out_writes_( SYMCRYPT_DES_BLOCK_SIZE ) PBYTE pbDst )
{
SymCrypt3DesEncrypt( &pExpandedKey->threeDes, pbSrc, pbDst );
}
VOID
SYMCRYPT_CALL
SymCryptDesDecrypt(
_In_ PCSYMCRYPT_DES_EXPANDED_KEY pExpandedKey,
_In_reads_( SYMCRYPT_DES_BLOCK_SIZE ) PCBYTE pbSrc,
_Out_writes_( SYMCRYPT_DES_BLOCK_SIZE ) PBYTE pbDst )
{
SymCrypt3DesDecrypt( &pExpandedKey->threeDes, pbSrc, pbDst );
}
//
// The 3DesCbcEncrypt/Decrypt functions are used to make converting code from
// older libraries to SymCrypt easier.
//
VOID
SYMCRYPT_CALL
SymCrypt3DesCbcEncrypt(
_In_ PCSYMCRYPT_3DES_EXPANDED_KEY pExpandedKey,
_Inout_updates_( SYMCRYPT_3DES_BLOCK_SIZE ) PBYTE pbChainingValue,
_In_reads_( cbData ) PCBYTE pbSrc,
_Out_writes_( cbData ) PBYTE pbDst,
SIZE_T cbData )
{
SYMCRYPT_ASSERT( SymCrypt3DesBlockCipher->blockSize == SYMCRYPT_3DES_BLOCK_SIZE );
SymCryptCbcEncrypt( SymCrypt3DesBlockCipher, pExpandedKey, pbChainingValue, pbSrc, pbDst, cbData );
}
VOID
SYMCRYPT_CALL
SymCrypt3DesCbcDecrypt(
_In_ PCSYMCRYPT_3DES_EXPANDED_KEY pExpandedKey,
_Inout_updates_( SYMCRYPT_3DES_BLOCK_SIZE ) PBYTE pbChainingValue,
_In_reads_( cbData ) PCBYTE pbSrc,
_Out_writes_( cbData ) PBYTE pbDst,
SIZE_T cbData )
{
SYMCRYPT_ASSERT( SymCrypt3DesBlockCipher->blockSize == SYMCRYPT_3DES_BLOCK_SIZE );
SymCryptCbcDecrypt( SymCrypt3DesBlockCipher, pExpandedKey, pbChainingValue, pbSrc, pbDst, cbData );
}
VOID
SYMCRYPT_CALL
SymCryptDesExpandSingleKey(
_Out_writes_bytes_(128) UINT32 expandedKeyTable[16][2],
_In_reads_(8) PCBYTE pKey )
{
UINT32 Cr, Dr; // The C_r D_r values of FIPS 43 for round value r
UINT32 r; // round
UINT32 K1, K2; // round keys after the permuted choice 2
UINT32 tmp;
//
// We follow the FIPS 43 flow quite closely and have not optimized the key expansion much.
// Key expansion is not performance-critical.
//
// Load the key
Cr = SYMCRYPT_LOAD_LSBFIRST32( pKey );
Dr = SYMCRYPT_LOAD_LSBFIRST32( pKey + 4 );
//
// The Permuted Choice 1 can be done mostly with a sequence of bit swaps.
// The algorithm we use is derived from our earlier implementation and might potentially
// derive from an external source.
// But the algorithm cannot be copyrighted, only patented, and if there were any patents
// they have expired by now.
// The expression of the algorithm in code is purely MS generated, and so not encumbered
// by external copyrights.
// This algorithm is really just a transposition of the bits when viewed as an 8x8 matrix
// with an additional permutation on the output side.
//
SWAP_BITS_BETWEEN_UINT32( Cr, Dr, 4, 0x0f0f0f0f );
SWAP_BITS_WITHIN_UINT32( Dr, 18, 0x00003333 );
SWAP_BITS_WITHIN_UINT32( Cr, 18, 0x00003333 );
SWAP_BITS_BETWEEN_UINT32( Cr, Dr, 1, 0x55555555 );
SWAP_BITS_BETWEEN_UINT32( Dr, Cr, 8, 0x00ff00ff );
SWAP_BITS_BETWEEN_UINT32( Cr, Dr, 1, 0x55555555 );
SWAP_BITS_WITHIN_UINT32( Dr, 16, 0xff );
// Have to re-arrange C and D a tiny bit so that each contains 28 bits and we throw away 8 bits
Dr = (Dr & 0x00ffffff) | ((Cr & 0xf0000000 ) >> 4 );
Cr = (Cr & 0x0fffffff);
for( r = 0; r < 16; r++)
{
//
// Cr and Dr are the two key shift registers, they are rotated once or twice for each round.
//
if( SymCryptDesDoubleShift[ r ] ) {
Cr = ((Cr >> 2) | (Cr << 26));
Dr = ((Dr >> 2) | (Dr << 26));
} else {
Cr = ((Cr >> 1) | (Cr << 27));
Dr = ((Dr >> 1) | (Dr << 27));
}
Cr &= 0x0fffffff;
Dr &= 0x0fffffff;
//
// The Permuted Choice 2 is done using table lookups
// Not all bits of C and D are used, so we cut those out using shifts and masks,
// and then index 6 bits at a time into lookup tables that implement the bit relocation.
//
K1 = SymCryptDesKeySelect[0][ (Cr )&0x3f ] |
SymCryptDesKeySelect[1][((Cr >> 6)&0x03) | ((Cr >> 7)&0x3c)] |
SymCryptDesKeySelect[2][((Cr >> 13)&0x0f) | ((Cr >> 14)&0x30)] |
SymCryptDesKeySelect[3][((Cr >> 20)&0x01) | ((Cr >> 21)&0x06) | ((Cr >> 22)&0x38)];
K2 = SymCryptDesKeySelect[4][ (Dr )&0x3f ] |
SymCryptDesKeySelect[5][((Dr >> 7)&0x03) | ((Dr >> 8)&0x3c)] |
SymCryptDesKeySelect[6][ (Dr >> 15)&0x3f ] |
SymCryptDesKeySelect[7][((Dr >> 21)&0x0f) | ((Dr >> 22)&0x30)];
//
// After this we still have to swap the halves of K1 and K2, that is done below
// as part of the formatting of the round key
//
//
// So far we have recreated the round keys per the standard.
// The round keys are stored rotated by 2 as the encrypt/decrypt code finds that easier.
// We could update the tables to do this, but key expansion is not used that frequently,
// and it is not worth the effort to update the tables.
//
// We don't worry about extraneous bits in unused positions as the F function masks out unused bits.
//
tmp = ((K2 << 16) | (K1 & 0x0000ffff)) ;
expandedKeyTable[r][0] = ROL32(tmp, 2);
tmp = ((K1 >> 16) | (K2 & 0xffff0000));
expandedKeyTable[r][1] = ROL32(tmp, 6);
}
}
SYMCRYPT_NOINLINE
SYMCRYPT_ERROR
SYMCRYPT_CALL
SymCrypt3DesExpandKey(
_Out_ PSYMCRYPT_3DES_EXPANDED_KEY pExpandedKey,
_In_reads_(cbKey) PCBYTE pbKey,
SIZE_T cbKey )
{
SIZE_T keyIndex = 0;
int i;
if( cbKey != 8 && cbKey != 16 && cbKey != 24 )
{
return SYMCRYPT_WRONG_KEY_SIZE;
}
//
// A loop that goes over the provided key as a circular buffer provides
// the right result with the least complexity.
// This is inefficient for the cases cbKey=8 and cbKey=16, but those should
// not be used anyway.
//
for( i=0; i<3; i++ )
{
SYMCRYPT_ASSERT( keyIndex <= cbKey - 8 ); // help PreFast
SymCryptDesExpandSingleKey( pExpandedKey->roundKey[i], pbKey + keyIndex );
keyIndex = (keyIndex + 8) % cbKey;
}
SYMCRYPT_SET_MAGIC( pExpandedKey );
return SYMCRYPT_NO_ERROR;
}
//
// The DES round function
// This is straight from the standard.
// Ta and Tb each contain 4 sets of 6 bits that are S-box inputs
// We interleave the use of Ta and Tb to provide better CPU scheduling on weak compilers.
// We ensure that the input bits appear in bits 2-7 of the index to avoid a scaled index
// which can be slower on some CPUs.
//
#define F(L, R, keyptr) { \
Ta = keyptr[0] ^ R; \
Tb = keyptr[1] ^ R; \
Tb = ROR32(Tb, 4); \
L ^= *(UINT32 *)((PBYTE)SymCryptDesSpbox[0] + ( Ta & 0xfc)); \
L ^= *(UINT32 *)((PBYTE)SymCryptDesSpbox[1] + ( Tb & 0xfc)); \
L ^= *(UINT32 *)((PBYTE)SymCryptDesSpbox[2] + ((Ta>> 8)& 0xfc)); \
L ^= *(UINT32 *)((PBYTE)SymCryptDesSpbox[3] + ((Tb>> 8)& 0xfc)); \
L ^= *(UINT32 *)((PBYTE)SymCryptDesSpbox[4] + ((Ta>>16)& 0xfc)); \
L ^= *(UINT32 *)((PBYTE)SymCryptDesSpbox[5] + ((Tb>>16)& 0xfc)); \
L ^= *(UINT32 *)((PBYTE)SymCryptDesSpbox[6] + ((Ta>>24)& 0xfc)); \
L ^= *(UINT32 *)((PBYTE)SymCryptDesSpbox[7] + ((Tb>>24)& 0xfc)); }
//
// Block encryption.
// The noinline stops the compiler from inlining the code and creating additional
// implementations which would require separate FIPS selftests.
//
SYMCRYPT_NOINLINE
VOID
SYMCRYPT_CALL
SymCrypt3DesEncrypt(
_In_ PCSYMCRYPT_3DES_EXPANDED_KEY pExpandedKey,
_In_reads_( SYMCRYPT_3DES_BLOCK_SIZE ) PCBYTE pbSrc,
_Out_writes_( SYMCRYPT_3DES_BLOCK_SIZE ) PBYTE pbDst )
{
UINT32 L, R, Ta, Tb;
int r;
SYMCRYPT_CHECK_MAGIC( pExpandedKey );
R = SYMCRYPT_LOAD_LSBFIRST32( pbSrc );
L = SYMCRYPT_LOAD_LSBFIRST32( pbSrc + 4 );
//
// Hoey's wonderful initial permutation algorithm, from Outerbridge
// (see Schneier p 478)
//
// The algorithm we use is derived (through several intermediate forms) from the mentioned source.
// But the algorithm cannot be copyrighted, only patented, and if there were any patents
// they have expired by now.
// The expression of the algorithm in code is purely MS generated,
// within the confines of implementing the algorithm in the best way such that even a simple
// compiler will create good code.
//
R = ROL32(R, 4);
Ta = (L ^ R) & 0xf0f0f0f0;
L ^= Ta;
R ^= Ta;
L = ROL32(L, 20);
Ta = (L ^ R) & 0xfff0000f;
R ^= Ta;
L ^= Ta;
L = ROL32(L,14);
Ta = (L ^ R) & 0x33333333;
R ^= Ta;
L ^= Ta;
R = ROL32(R, 22);
Ta = (L ^ R) & 0x03fc03fc;
R ^= Ta;
L ^= Ta;
R = ROL32(R, 9);
Ta = (L ^ R) & 0xaaaaaaaa;
R ^= Ta;
L ^= Ta;
L = ROL32(L, 1);
//
// First: encryption
//
for( r=0; r<16; r += 2 )
{
F( L, R, pExpandedKey->roundKey[0][r ] );
F( R, L, pExpandedKey->roundKey[0][r+1] );
}
//
// Second: decryption
// Note that L and R are swapped here, and the round counter counts down.
//
for( r=14; r>=0; r -= 2 )
{
F( R, L, pExpandedKey->roundKey[1][r+1] );
F( L, R, pExpandedKey->roundKey[1][r ] );
}
//
// Third: encryption
//
for( r=0; r<16; r += 2 )
{
F( L, R, pExpandedKey->roundKey[2][r ] );
F( R, L, pExpandedKey->roundKey[2][r+1] );
}
R = ROR32(R, 1);
Ta = (L ^ R) & 0xaaaaaaaa;
R ^= Ta;
L ^= Ta;
L = ROR32(L, 9);
Ta = (L ^ R) & 0x03fc03fc;
R ^= Ta;
L ^= Ta;
L = ROR32(L, 22);
Ta = (L ^ R) & 0x33333333;
R ^= Ta;
L ^= Ta;
R = ROR32(R, 14);
Ta = (L ^ R) & 0xfff0000f;
R ^= Ta;
L ^= Ta;
R = ROR32(R, 20);
Ta = (L ^ R) & 0xf0f0f0f0;
R ^= Ta;
L ^= Ta;
L = ROR32(L, 4);
SYMCRYPT_STORE_LSBFIRST32( pbDst, L );
SYMCRYPT_STORE_LSBFIRST32( pbDst + 4, R );
}
//
// Block decrypt
// The noinline stops the compiler from inlining the code and creating additional
// implementations which would require separate FIPS selftests.
//
SYMCRYPT_NOINLINE
VOID
SYMCRYPT_CALL
SymCrypt3DesDecrypt(
_In_ PCSYMCRYPT_3DES_EXPANDED_KEY pExpandedKey,
_In_reads_( SYMCRYPT_3DES_BLOCK_SIZE ) PCBYTE pbSrc,
_Out_writes_( SYMCRYPT_3DES_BLOCK_SIZE ) PBYTE pbDst )
{
UINT32 L, R, Ta, Tb;
int r;
SYMCRYPT_CHECK_MAGIC( pExpandedKey );
R = SYMCRYPT_LOAD_LSBFIRST32( pbSrc );
L = SYMCRYPT_LOAD_LSBFIRST32( pbSrc + 4 );
R = ROL32(R, 4);
Ta = (L ^ R) & 0xf0f0f0f0;
L ^= Ta;
R ^= Ta;
L = ROL32(L, 20);
Ta = (L ^ R) & 0xfff0000f;
L ^= Ta;
R ^= Ta;
L = ROL32(L, 14);
Ta = (L ^ R) & 0x33333333;
L ^= Ta;
R ^= Ta;
R = ROL32(R, 22);
Ta = (L ^ R) & 0x03fc03fc;
L ^= Ta;
R ^= Ta;
R = ROL32(R, 9);
Ta = (L ^ R) & 0xaaaaaaaa;
L ^= Ta;
R ^= Ta;
L = ROL32(L, 1);
// Decrypt with key 2
for( r=14; r>=0; r -= 2 )
{
F( L, R, pExpandedKey->roundKey[2][r+1] );
F( R, L, pExpandedKey->roundKey[2][r ] );
}
// Encrypt with key 1
for( r=0; r<16; r += 2 )
{
F( R, L, pExpandedKey->roundKey[1][r ] );
F( L, R, pExpandedKey->roundKey[1][r+1] );
}
// Decrypt with key 0
for( r=14; r>=0; r -= 2 )
{
F( L, R, pExpandedKey->roundKey[0][r+1] );
F( R, L, pExpandedKey->roundKey[0][r ] );
}
/* Inverse permutation, also from Hoey via Outerbridge and Schneier */
R = ROR32(R, 1);
Ta = (L ^ R) & 0xaaaaaaaa;
L ^= Ta;
R ^= Ta;
L = ROR32(L, 9);
Ta = (L ^ R) & 0x03fc03fc;
L ^= Ta;
R ^= Ta;
L = ROR32(L, 22);
Ta = (L ^ R) & 0x33333333;
L ^= Ta;
R ^= Ta;
R = ROR32(R, 14);
Ta = (L ^ R) & 0xfff0000f;
L ^= Ta;
R ^= Ta;
R = ROR32(R, 20);
Ta = (L ^ R) & 0xf0f0f0f0;
L ^= Ta;
R ^= Ta;
L = ROR32(L, 4);
SYMCRYPT_STORE_LSBFIRST32( pbDst, L );
SYMCRYPT_STORE_LSBFIRST32( pbDst + 4, R );
}
VOID
SYMCRYPT_CALL
SymCryptDesSetOddParity(
_Inout_updates_( cbData ) PBYTE pbData,
_In_ SIZE_T cbData )
//
// For each byte, set bit 0 such that the byte parity is odd.
// This function is side-channel safe
//
{
SIZE_T i;
BYTE b, t;
for( i=0; i<cbData; i++ )
{
// We obey the read-once write-once rule
b = *pbData;
t = b ^ (b>>4); // parity(b) = parity( t & 0xf )
t ^= t>>2; // = parity( t & 0x3 )
t ^= t>>1; // = parity( t & 0x1 )
*pbData++ = b ^ (t&1) ^ 1;
}
}
//
// Test vectors for self test
//
static const BYTE SP800_67Key[24] = {
0x01, 0x23, 0x45, 0x67, 0x89, 0xAB, 0xCD, 0xEF,
0x23, 0x45, 0x67, 0x89, 0xAB, 0xCD, 0xEF, 0x01,
0x45, 0x67, 0x89, 0xAB, 0xCD, 0xEF, 0x01, 0x23,
};
static const BYTE des3KnownPlaintext[8] = {
0x4E, 0x6F, 0x77, 0x20, 0x69, 0x73, 0x20, 0x74,
};
static const BYTE des3KnownCiphertext[8] = {
0x31, 0x4F, 0x83, 0x27, 0xFA, 0x7A, 0x09, 0xA8,
};
static const BYTE desKnownCiphertext[8] = {
0x3F, 0xA4, 0x0E, 0x8A, 0x98, 0x4D, 0x48, 0x15,
};
VOID
SYMCRYPT_CALL
SymCryptDesSelftest(void)
{
BYTE buf[SYMCRYPT_DES_BLOCK_SIZE];
SYMCRYPT_DES_EXPANDED_KEY key;
if( SymCryptDesExpandKey( &key, SP800_67Key, 8 ) != SYMCRYPT_NO_ERROR )
{
SymCryptFatal( 'desa' );
}
SymCryptDesEncrypt( &key, des3KnownPlaintext, buf );
SymCryptInjectError( buf, SYMCRYPT_DES_BLOCK_SIZE );
if( memcmp( buf, desKnownCiphertext, SYMCRYPT_DES_BLOCK_SIZE ) != 0 )
{
SymCryptFatal( 'desb' );
}
SymCryptDesDecrypt( &key, desKnownCiphertext, buf );
SymCryptInjectError( buf, SYMCRYPT_DES_BLOCK_SIZE );
if( memcmp( buf, des3KnownPlaintext, SYMCRYPT_DES_BLOCK_SIZE ) != 0 )
{
SymCryptFatal( 'desc' );
}
}
VOID
SYMCRYPT_CALL
SymCrypt3DesSelftest(void)
{
BYTE buf[SYMCRYPT_3DES_BLOCK_SIZE];
SYMCRYPT_3DES_EXPANDED_KEY key;
if( SymCrypt3DesExpandKey( &key, SP800_67Key, 24 ) != SYMCRYPT_NO_ERROR )
{
SymCryptFatal( 'des3' );
}
SymCrypt3DesEncrypt( &key, des3KnownPlaintext, buf );
SymCryptInjectError( buf, SYMCRYPT_3DES_BLOCK_SIZE );
if( memcmp( buf, des3KnownCiphertext, SYMCRYPT_3DES_BLOCK_SIZE ) != 0 )
{
SymCryptFatal( 'des4' );
}
SymCrypt3DesDecrypt( &key, des3KnownCiphertext, buf );
SymCryptInjectError( buf, SYMCRYPT_3DES_BLOCK_SIZE );
if( memcmp( buf, des3KnownPlaintext, SYMCRYPT_3DES_BLOCK_SIZE ) != 0 )
{
SymCryptFatal( 'des5' );
}
}
#if 0
////////////////////////////////////////////
// Useful tables, kept for future reference.
//
// Tables defined in the Data Encryption Standard documents
// Three of these tables, the initial permutation, the final
// permutation and the expansion operator, are regular enough that
// for speed, we hard-code them. They're here for reference only.
// Also, the S and P boxes are used by a separate program, gensp.c,
// to build the combined SP box, Spbox[]. They're also here just
// for reference.
//
// initial permutation IP
static unsigned BYTE ip[] = {
58, 50, 42, 34, 26, 18, 10, 2,
60, 52, 44, 36, 28, 20, 12, 4,
62, 54, 46, 38, 30, 22, 14, 6,
64, 56, 48, 40, 32, 24, 16, 8,
57, 49, 41, 33, 25, 17, 9, 1,
59, 51, 43, 35, 27, 19, 11, 3,
61, 53, 45, 37, 29, 21, 13, 5,
63, 55, 47, 39, 31, 23, 15, 7
};
// final permutation IP^-1
static unsigned BYTE fp[] = {
40, 8, 48, 16, 56, 24, 64, 32,
39, 7, 47, 15, 55, 23, 63, 31,
38, 6, 46, 14, 54, 22, 62, 30,
37, 5, 45, 13, 53, 21, 61, 29,
36, 4, 44, 12, 52, 20, 60, 28,
35, 3, 43, 11, 51, 19, 59, 27,
34, 2, 42, 10, 50, 18, 58, 26,
33, 1, 41, 9, 49, 17, 57, 25
};
// expansion operation matrix
static unsigned BYTE ei[] = {
32, 1, 2, 3, 4, 5,
4, 5, 6, 7, 8, 9,
8, 9, 10, 11, 12, 13,
12, 13, 14, 15, 16, 17,
16, 17, 18, 19, 20, 21,
20, 21, 22, 23, 24, 25,
24, 25, 26, 27, 28, 29,
28, 29, 30, 31, 32, 1
};
// The (in)famous S-boxes
static unsigned BYTE sbox[8][64] = {
// S1
14, 4, 13, 1, 2, 15, 11, 8, 3, 10, 6, 12, 5, 9, 0, 7,
0, 15, 7, 4, 14, 2, 13, 1, 10, 6, 12, 11, 9, 5, 3, 8,
4, 1, 14, 8, 13, 6, 2, 11, 15, 12, 9, 7, 3, 10, 5, 0,
15, 12, 8, 2, 4, 9, 1, 7, 5, 11, 3, 14, 10, 0, 6, 13,
// S2
15, 1, 8, 14, 6, 11, 3, 4, 9, 7, 2, 13, 12, 0, 5, 10,
3, 13, 4, 7, 15, 2, 8, 14, 12, 0, 1, 10, 6, 9, 11, 5,
0, 14, 7, 11, 10, 4, 13, 1, 5, 8, 12, 6, 9, 3, 2, 15,
13, 8, 10, 1, 3, 15, 4, 2, 11, 6, 7, 12, 0, 5, 14, 9,
// S3
10, 0, 9, 14, 6, 3, 15, 5, 1, 13, 12, 7, 11, 4, 2, 8,
13, 7, 0, 9, 3, 4, 6, 10, 2, 8, 5, 14, 12, 11, 15, 1,
13, 6, 4, 9, 8, 15, 3, 0, 11, 1, 2, 12, 5, 10, 14, 7,
1, 10, 13, 0, 6, 9, 8, 7, 4, 15, 14, 3, 11, 5, 2, 12,
// S4
7, 13, 14, 3, 0, 6, 9, 10, 1, 2, 8, 5, 11, 12, 4, 15,
13, 8, 11, 5, 6, 15, 0, 3, 4, 7, 2, 12, 1, 10, 14, 9,
10, 6, 9, 0, 12, 11, 7, 13, 15, 1, 3, 14, 5, 2, 8, 4,
3, 15, 0, 6, 10, 1, 13, 8, 9, 4, 5, 11, 12, 7, 2, 14,
// S5
2, 12, 4, 1, 7, 10, 11, 6, 8, 5, 3, 15, 13, 0, 14, 9,
14, 11, 2, 12, 4, 7, 13, 1, 5, 0, 15, 10, 3, 9, 8, 6,
4, 2, 1, 11, 10, 13, 7, 8, 15, 9, 12, 5, 6, 3, 0, 14,
11, 8, 12, 7, 1, 14, 2, 13, 6, 15, 0, 9, 10, 4, 5, 3,
// S6
12, 1, 10, 15, 9, 2, 6, 8, 0, 13, 3, 4, 14, 7, 5, 11,
10, 15, 4, 2, 7, 12, 9, 5, 6, 1, 13, 14, 0, 11, 3, 8,
9, 14, 15, 5, 2, 8, 12, 3, 7, 0, 4, 10, 1, 13, 11, 6,
4, 3, 2, 12, 9, 5, 15, 10, 11, 14, 1, 7, 6, 0, 8, 13,
// S7
4, 11, 2, 14, 15, 0, 8, 13, 3, 12, 9, 7, 5, 10, 6, 1,
13, 0, 11, 7, 4, 9, 1, 10, 14, 3, 5, 12, 2, 15, 8, 6,
1, 4, 11, 13, 12, 3, 7, 14, 10, 15, 6, 8, 0, 5, 9, 2,
6, 11, 13, 8, 1, 4, 10, 7, 9, 5, 0, 15, 14, 2, 3, 12,
// S8
13, 2, 8, 4, 6, 15, 11, 1, 10, 9, 3, 14, 5, 0, 12, 7,
1, 15, 13, 8, 10, 3, 7, 4, 12, 5, 6, 11, 0, 14, 9, 2,
7, 11, 4, 1, 9, 12, 14, 2, 0, 6, 10, 13, 15, 3, 5, 8,
2, 1, 14, 7, 4, 10, 8, 13, 15, 12, 9, 0, 3, 5, 6, 11
};
// 32-bit permutation function P used on the output of the S-boxes
static unsigned BYTE p32i[] = {
16, 7, 20, 21,
29, 12, 28, 17,
1, 15, 23, 26,
5, 18, 31, 10,
2, 8, 24, 14,
32, 27, 3, 9,
19, 13, 30, 6,
22, 11, 4, 25
};
// permuted choice table (key)
static unsigned BYTE pc1[] = {
57, 49, 41, 33, 25, 17, 9,
1, 58, 50, 42, 34, 26, 18,
10, 2, 59, 51, 43, 35, 27,
19, 11, 3, 60, 52, 44, 36,
63, 55, 47, 39, 31, 23, 15,
7, 62, 54, 46, 38, 30, 22,
14, 6, 61, 53, 45, 37, 29,
21, 13, 5, 28, 20, 12, 4
};
// number left rotations of pc1
static unsigned BYTE totrot[] = {
1,2,4,6,8,10,12,14,15,17,19,21,23,25,27,28
};
// permuted choice key (table)
static unsigned BYTE pc2[] = {
14, 17, 11, 24, 1, 5,
3, 28, 15, 6, 21, 10,
23, 19, 12, 4, 26, 8,
16, 7, 27, 20, 13, 2,
41, 52, 31, 37, 47, 55,
30, 40, 51, 45, 33, 48,
44, 49, 39, 56, 34, 53,
46, 42, 50, 36, 29, 32
};
#endif