forked from shubham-goel/4D-Humans
-
Notifications
You must be signed in to change notification settings - Fork 0
/
gradio_app.py
187 lines (151 loc) · 8.42 KB
/
gradio_app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
from pathlib import Path
import tempfile
import torch
import argparse
import os
import numpy as np
import gradio as gr
from PIL import Image
from hmr2.configs import CACHE_DIR_4DHUMANS
from hmr2.models import HMR2, download_models, load_hmr2, DEFAULT_CHECKPOINT
from hmr2.utils import recursive_to
from hmr2.datasets.vitdet_dataset import ViTDetDataset, DEFAULT_MEAN, DEFAULT_STD
from hmr2.utils.renderer import Renderer, cam_crop_to_full
LIGHT_BLUE=(0.65098039, 0.74117647, 0.85882353)
def main():
parser = argparse.ArgumentParser(description='HMR2 demo code')
parser.add_argument('--checkpoint', type=str, default=DEFAULT_CHECKPOINT, help='Path to pretrained model checkpoint')
# parser.add_argument('--img_folder', type=str, default='example_data/images', help='Folder with input images')
parser.add_argument('--out_folder', type=str, default='demo_out', help='Output folder to save rendered results')
# parser.add_argument('--side_view', dest='side_view', action='store_true', default=False, help='If set, render side view also')
# parser.add_argument('--full_frame', dest='full_frame', action='store_true', default=False, help='If set, render all people together also')
# parser.add_argument('--save_mesh', dest='save_mesh', action='store_true', default=False, help='If set, save meshes to disk also')
parser.add_argument('--batch_size', type=int, default=64, help='Batch size for inference/fitting')
args = parser.parse_args()
# Download and load checkpoints
download_models(CACHE_DIR_4DHUMANS)
model, model_cfg = load_hmr2(args.checkpoint)
# Setup HMR2.0 model
device = torch.device('cuda') if torch.cuda.is_available() else torch.device('cpu')
model = model.to(device)
model.eval()
# Load detector
from hmr2.utils.utils_detectron2 import DefaultPredictor_Lazy
from detectron2.config import LazyConfig
import hmr2
cfg_path = Path(hmr2.__file__).parent/'configs'/'cascade_mask_rcnn_vitdet_h_75ep.py'
detectron2_cfg = LazyConfig.load(str(cfg_path))
detectron2_cfg.train.init_checkpoint = "https://dl.fbaipublicfiles.com/detectron2/ViTDet/COCO/cascade_mask_rcnn_vitdet_h/f328730692/model_final_f05665.pkl"
for i in range(3):
detectron2_cfg.model.roi_heads.box_predictors[i].test_score_thresh = 0.25
detector = DefaultPredictor_Lazy(detectron2_cfg)
# Setup the renderer
renderer = Renderer(model_cfg, faces=model.smpl.faces)
# Make output directory if it does not exist
os.makedirs(args.out_folder, exist_ok=True)
# # Iterate over all images in folder
# for img_path in Path(args.img_folder).glob('*.jpg'):
# img_cv2 = cv2.imread(str(img_path))
def infer(in_pil_img, in_threshold=0.8, out_pil_img=None):
# Convert RGB to BGR
img_cv2 = np.array(in_pil_img)[:, :, ::-1].copy()
# Detect humans in image
det_out = detector(img_cv2)
det_instances = det_out['instances']
valid_idx = (det_instances.pred_classes==0) & (det_instances.scores > 0.5)
boxes=det_instances.pred_boxes.tensor[valid_idx].cpu().numpy()
# Run HMR2.0 on all detected humans
dataset = ViTDetDataset(model_cfg, img_cv2, boxes)
dataloader = torch.utils.data.DataLoader(dataset, batch_size=8, shuffle=False, num_workers=0)
all_verts = []
all_cam_t = []
all_mesh_paths = []
temp_name = next(tempfile._get_candidate_names())
for batch in dataloader:
batch = recursive_to(batch, device)
with torch.no_grad():
out = model(batch)
pred_cam = out['pred_cam']
box_center = batch["box_center"].float()
box_size = batch["box_size"].float()
img_size = batch["img_size"].float()
scaled_focal_length = model_cfg.EXTRA.FOCAL_LENGTH / model_cfg.MODEL.IMAGE_SIZE * img_size.max()
pred_cam_t_full = cam_crop_to_full(pred_cam, box_center, box_size, img_size, scaled_focal_length).detach().cpu().numpy()
# Render the result
batch_size = batch['img'].shape[0]
for n in range(batch_size):
# Get filename from path img_path
# img_fn, _ = os.path.splitext(os.path.basename(img_path))
person_id = int(batch['personid'][n])
white_img = (torch.ones_like(batch['img'][n]).cpu() - DEFAULT_MEAN[:,None,None]/255) / (DEFAULT_STD[:,None,None]/255)
input_patch = batch['img'][n].cpu() * (DEFAULT_STD[:,None,None]/255) + (DEFAULT_MEAN[:,None,None]/255)
input_patch = input_patch.permute(1,2,0).numpy()
# regression_img = renderer(out['pred_vertices'][n].detach().cpu().numpy(),
# out['pred_cam_t'][n].detach().cpu().numpy(),
# batch['img'][n],
# mesh_base_color=LIGHT_BLUE,
# scene_bg_color=(1, 1, 1),
# )
# if args.side_view:
# side_img = renderer(out['pred_vertices'][n].detach().cpu().numpy(),
# out['pred_cam_t'][n].detach().cpu().numpy(),
# white_img,
# mesh_base_color=LIGHT_BLUE,
# scene_bg_color=(1, 1, 1),
# side_view=True)
# final_img = np.concatenate([input_patch, regression_img, side_img], axis=1)
# else:
# final_img = np.concatenate([input_patch, regression_img], axis=1)
# cv2.imwrite(os.path.join(args.out_folder, f'{img_fn}_{person_id}.png'), 255*final_img[:, :, ::-1])
# Add all verts and cams to list
verts = out['pred_vertices'][n].detach().cpu().numpy()
cam_t = pred_cam_t_full[n]
all_verts.append(verts)
all_cam_t.append(cam_t)
# Save all meshes to disk
# if args.save_mesh:
if True:
camera_translation = cam_t.copy()
tmesh = renderer.vertices_to_trimesh(verts, camera_translation, LIGHT_BLUE)
temp_path = os.path.join(args.out_folder, f'{temp_name}_{person_id}.obj')
tmesh.export(temp_path)
all_mesh_paths.append(temp_path)
# Render front view
if len(all_verts) > 0:
misc_args = dict(
mesh_base_color=LIGHT_BLUE,
scene_bg_color=(1, 1, 1),
focal_length=scaled_focal_length,
)
cam_view = renderer.render_rgba_multiple(all_verts, cam_t=all_cam_t, render_res=img_size[n], **misc_args)
# Overlay image
input_img = img_cv2.astype(np.float32)[:,:,::-1]/255.0
input_img = np.concatenate([input_img, np.ones_like(input_img[:,:,:1])], axis=2) # Add alpha channel
input_img_overlay = input_img[:,:,:3] * (1-cam_view[:,:,3:]) + cam_view[:,:,:3] * cam_view[:,:,3:]
# cv2.imwrite(os.path.join(args.out_folder, f'{img_fn}_all.png'), 255*input_img_overlay[:, :, ::-1])
# convert to PIL image
out_pil_img = Image.fromarray((input_img_overlay*255).astype(np.uint8))
return out_pil_img, all_mesh_paths
else:
return None, []
with gr.Blocks(title="4DHumans", css=".gradio-container") as demo:
gr.HTML("""<div style="font-weight:bold; text-align:center; color:royalblue;">HMR 2.0</div>""")
with gr.Row():
with gr.Column():
input_image = gr.Image(label="Input image", type="pil")
with gr.Column():
output_image = gr.Image(label="Reconstructions", type="pil")
output_meshes = gr.File(label="3D meshes")
gr.HTML("""<br/>""")
with gr.Row():
threshold = gr.Slider(0, 1.0, value=0.6, label='Detection Threshold')
send_btn = gr.Button("Infer")
send_btn.click(fn=infer, inputs=[input_image, threshold], outputs=[output_image, output_meshes])
gr.Examples([
['example_data/images/pexels-anete-lusina-4793258.jpg'],
['example_data/images/skates.png'],
],
inputs=[input_image, 0.6])
demo.launch(debug=True)
if __name__ == '__main__':
main()