diff --git a/source/rst/linear_models.rst b/source/rst/linear_models.rst index d15c07e..a412514 100644 --- a/source/rst/linear_models.rst +++ b/source/rst/linear_models.rst @@ -799,7 +799,7 @@ Let's now try with 500,000 observations, showing only the histogram (without rot ar = LinearStateSpace(A_2, C_2, G_2, mu_0=np.ones(4)) fig, ax = plt.subplots() x, y = ar.simulate(sample_size) - mu_x, mu_y, Sigma_x, Sigma_y = ar.stationary_distributions() + mu_x, mu_y, Sigma_x, Sigma_y, Sigma_yx = ar.stationary_distributions() f_y = norm(loc=float(mu_y), scale=float(np.sqrt(Sigma_y))) y = y.flatten() ygrid = np.linspace(ymin, ymax, 150) @@ -1006,7 +1006,7 @@ This picture shows cross-sectional distributions for :math:`y` at times ar = LinearStateSpace(A, C, G, mu_0=np.ones(4)) if steady_state == 'True': - μ_x, μ_y, Σ_x, Σ_y = ar.stationary_distributions() + μ_x, μ_y, Σ_x, Σ_y, Σ_yx = ar.stationary_distributions() ar_state = LinearStateSpace(A, C, G, mu_0=μ_x, Sigma_0=Σ_x) ymin, ymax = -0.6, 0.6 diff --git a/source/rst/perm_income_cons.rst b/source/rst/perm_income_cons.rst index a21c2af..7dee0f3 100644 --- a/source/rst/perm_income_cons.rst +++ b/source/rst/perm_income_cons.rst @@ -382,7 +382,7 @@ First, we create the objects for the optimal linear regulator μ_z0 = np.array([[1.0], [0.0], [0.0]]) Σ_z0 = np.zeros((3, 3)) Lz = qe.LinearStateSpace(A, C, G, mu_0=μ_z0, Sigma_0=Σ_z0) - μ_z, μ_y, Σ_z, Σ_y = Lz.stationary_distributions() + μ_z, μ_y, Σ_z, Σ_y, Σ_yx = Lz.stationary_distributions() # Mean vector of state for the savings problem mxo = np.vstack([μ_z, 0.0]) diff --git a/source/rst/samuelson.rst b/source/rst/samuelson.rst index 2d2acc3..6082f60 100644 --- a/source/rst/samuelson.rst +++ b/source/rst/samuelson.rst @@ -1348,7 +1348,7 @@ methods and attributes) to add more functions to use # values for simulation if stationary == True: try: - self.μ_x, self.μ_y, self.σ_x, self.σ_y = \ + self.μ_x, self.μ_y, self.σ_x, self.σ_y, self.σ_yx = \ self.stationary_distributions() self.μ_0 = self.μ_y self.Σ_0 = self.σ_y