-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathsvm.py
47 lines (38 loc) · 1.19 KB
/
svm.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
from sklearn import svm
import linecache
import random
ratio = 0.8
samples = linecache.getlines('svm5b_sep.txt')
random.shuffle(samples)
train = samples[0:int(len(samples)*ratio)]
test = samples[int(len(samples)*ratio):len(samples)]
X = []
y = []
X_test = []
y_test = []
for sample in train:
sample_array_o = sample.split('\t')
sample_array = sample_array_o[0:len(sample_array_o)-1]
sample_result = sample_array_o[-1]
for element in range(0, len(sample_array)):
sample_array[element] = float(sample_array[element])
sample_result = int(sample_result)
X.append(sample_array)
y.append(sample_result)
for sample in test:
sample_array_o = sample.split('\t')
sample_array = sample_array_o[0:len(sample_array_o)-1]
sample_result = sample_array_o[-1]
for element in range(0, len(sample_array)):
sample_array[element] = float(sample_array[element])
sample_result = int(sample_result)
X_test.append(sample_array)
y_test.append(sample_result)
clf = svm.SVC(kernel='linear')
clf.fit(X, y)
truth = 0
predicts = clf.predict(X_test)
for i in range(0, len(predicts)):
if predicts[i] == y_test[i]:
truth += 1
print truth/(len(predicts)+0.0)