This repository has been archived by the owner on Jan 24, 2019. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathsobol_sequence.py
491 lines (416 loc) · 14.5 KB
/
sobol_sequence.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
"""
Licensing:
This code is distributed under the GNU LGPL license.
Authors:
Original FORTRAN77 version of i4_sobol by Bennett Fox.
MATLAB version by John Burkardt.
PYTHON version by Corrado Chisari
Original Python version of is_prime by Corrado Chisari
Original MATLAB versions of other functions by John Burkardt.
PYTHON versions by Corrado Chisari
Original code is available from http://people.sc.fsu.edu/~jburkardt/py_src/sobol/sobol.html
"""
from __future__ import division
import numpy as np
from scipy.stats import norm
__all__ = ['i4_bit_hi1', 'i4_bit_lo0', 'i4_sobol_generate',
'i4_sobol', 'i4_uniform', 'prime_ge', 'is_prime']
def i4_bit_hi1(n):
"""
i4_bit_hi1 returns the position of the high 1 bit base 2 in an integer.
Example:
+------+-------------+-----
| N | Binary | BIT
+------|-------------+-----
| 0 | 0 | 0
| 1 | 1 | 1
| 2 | 10 | 2
| 3 | 11 | 2
| 4 | 100 | 3
| 5 | 101 | 3
| 6 | 110 | 3
| 7 | 111 | 3
| 8 | 1000 | 4
| 9 | 1001 | 4
| 10 | 1010 | 4
| 11 | 1011 | 4
| 12 | 1100 | 4
| 13 | 1101 | 4
| 14 | 1110 | 4
| 15 | 1111 | 4
| 16 | 10000 | 5
| 17 | 10001 | 5
| 1023 | 1111111111 | 10
| 1024 | 10000000000 | 11
| 1025 | 10000000001 | 11
Parameters:
Input, integer N, the integer to be measured.
N should be nonnegative. If N is nonpositive, the value will always be 0.
Output, integer BIT, the number of bits base 2.
"""
i = np.floor(n)
bit = 0
while i > 0:
bit += 1
i //= 2
return bit
def i4_bit_lo0(n):
"""
I4_BIT_LO0 returns the position of the low 0 bit base 2 in an integer.
Example:
+------+------------+----
| N | Binary | BIT
+------+------------+----
| 0 | 0 | 1
| 1 | 1 | 2
| 2 | 10 | 1
| 3 | 11 | 3
| 4 | 100 | 1
| 5 | 101 | 2
| 6 | 110 | 1
| 7 | 111 | 4
| 8 | 1000 | 1
| 9 | 1001 | 2
| 10 | 1010 | 1
| 11 | 1011 | 3
| 12 | 1100 | 1
| 13 | 1101 | 2
| 14 | 1110 | 1
| 15 | 1111 | 5
| 16 | 10000 | 1
| 17 | 10001 | 2
| 1023 | 1111111111 | 1
| 1024 | 0000000000 | 1
| 1025 | 0000000001 | 1
Parameters:
Input, integer N, the integer to be measured.
N should be nonnegative.
Output, integer BIT, the position of the low 1 bit.
"""
bit = 1
i = np.floor(n)
while i != 2 * (i // 2):
bit += 1
i //= 2
return bit
def i4_sobol_generate(dim_num, n, skip=1):
"""
i4_sobol_generate generates a Sobol dataset.
Parameters:
Input, integer dim_num, the spatial dimension.
Input, integer N, the number of points to generate.
Input, integer SKIP, the number of initial points to skip.
Output, real R(M,N), the points.
"""
r = np.full((n, dim_num), np.nan)
for j in range(n):
seed = j + skip
r[j, 0:dim_num], next_seed = i4_sobol(dim_num, seed)
return r
def i4_sobol_generate_std_normal(dim_num, n, skip=1):
"""
Generates multivariate standard normal quasi-random variables.
Parameters:
Input, integer dim_num, the spatial dimension.
Input, integer n, the number of points to generate.
Input, integer SKIP, the number of initial points to skip.
Output, real np array of shape (n, dim_num).
"""
sobols = i4_sobol_generate(dim_num, n, skip)
normals = norm.ppf(sobols)
return normals
def i4_sobol(dim_num, seed):
"""
i4_sobol generates a new quasirandom Sobol vector with each call.
Discussion:
The routine adapts the ideas of Antonov and Saleev.
Reference:
Antonov, Saleev,
USSR Computational Mathematics and Mathematical Physics,
Volume 19, 1980, pages 252 - 256.
Paul Bratley, Bennett Fox,
Algorithm 659:
Implementing Sobol's Quasirandom Sequence Generator,
ACM Transactions on Mathematical Software,
Volume 14, Number 1, pages 88-100, 1988.
Bennett Fox,
Algorithm 647:
Implementation and Relative Efficiency of Quasirandom
Sequence Generators,
ACM Transactions on Mathematical Software,
Volume 12, Number 4, pages 362-376, 1986.
Ilya Sobol,
USSR Computational Mathematics and Mathematical Physics,
Volume 16, pages 236-242, 1977.
Ilya Sobol, Levitan,
The Production of Points Uniformly Distributed in a Multidimensional
Cube (in Russian),
Preprint IPM Akad. Nauk SSSR,
Number 40, Moscow 1976.
Parameters:
Input, integer DIM_NUM, the number of spatial dimensions.
DIM_NUM must satisfy 1 <= DIM_NUM <= 40.
Input/output, integer SEED, the "seed" for the sequence.
This is essentially the index in the sequence of the quasirandom
value to be generated. On output, SEED has been set to the
appropriate next value, usually simply SEED+1.
If SEED is less than 0 on input, it is treated as though it were 0.
An input value of 0 requests the first (0-th) element of the sequence.
Output, real QUASI(DIM_NUM), the next quasirandom vector.
"""
global atmost
global dim_max
global dim_num_save
global initialized
global lastq
global log_max
global maxcol
global poly
global recipd
global seed_save
global v
if 'initialized' not in list(globals().keys()):
initialized = 0
dim_num_save = -1
if not initialized or dim_num != dim_num_save:
initialized = 1
dim_max = 40
dim_num_save = -1
log_max = 30
seed_save = -1
# Initialize (part of) V.
v = np.zeros((dim_max, log_max))
v[0:40, 0] = np.transpose([
1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1])
v[2:40, 1] = np.transpose([
1, 3, 1, 3, 1, 3, 3, 1,
3, 1, 3, 1, 3, 1, 1, 3, 1, 3,
1, 3, 1, 3, 3, 1, 3, 1, 3, 1,
3, 1, 1, 3, 1, 3, 1, 3, 1, 3])
v[3:40, 2] = np.transpose([
7, 5, 1, 3, 3, 7, 5,
5, 7, 7, 1, 3, 3, 7, 5, 1, 1,
5, 3, 3, 1, 7, 5, 1, 3, 3, 7,
5, 1, 1, 5, 7, 7, 5, 1, 3, 3])
v[5:40, 3] = np.transpose([
1, 7, 9, 13, 11,
1, 3, 7, 9, 5, 13, 13, 11, 3, 15,
5, 3, 15, 7, 9, 13, 9, 1, 11, 7,
5, 15, 1, 15, 11, 5, 3, 1, 7, 9])
v[7:40, 4] = np.transpose([
9, 3, 27,
15, 29, 21, 23, 19, 11, 25, 7, 13, 17,
1, 25, 29, 3, 31, 11, 5, 23, 27, 19,
21, 5, 1, 17, 13, 7, 15, 9, 31, 9])
v[13:40, 5] = np.transpose([
37, 33, 7, 5, 11, 39, 63,
27, 17, 15, 23, 29, 3, 21, 13, 31, 25,
9, 49, 33, 19, 29, 11, 19, 27, 15, 25])
v[19:40, 6] = np.transpose([
13,
33, 115, 41, 79, 17, 29, 119, 75, 73, 105,
7, 59, 65, 21, 3, 113, 61, 89, 45, 107])
v[37:40, 7] = np.transpose([
7, 23, 39])
# Set POLY.
poly = [
1, 3, 7, 11, 13, 19, 25, 37, 59, 47,
61, 55, 41, 67, 97, 91, 109, 103, 115, 131,
193, 137, 145, 143, 241, 157, 185, 167, 229, 171,
213, 191, 253, 203, 211, 239, 247, 285, 369, 299]
atmost = 2 ** log_max - 1
# Find the number of bits in ATMOST.
maxcol = i4_bit_hi1(atmost)
# Initialize row 1 of V.
v[0, 0:maxcol] = 1
# Things to do only if the dimension changed.
if dim_num != dim_num_save:
# Check parameters.
if dim_num < 1 or dim_max < dim_num:
print('I4_SOBOL - Fatal error!')
print(' The spatial dimension DIM_NUM should satisfy:')
print(' 1 <= DIM_NUM <= %d' % dim_max)
print(' But this input value is DIM_NUM = %d' % dim_num)
return
dim_num_save = dim_num
# Initialize the remaining rows of V.
for i in range(2, dim_num + 1):
# The bits of the integer POLY(I) gives the form of polynomial I.
# Find the degree of polynomial I from binary encoding.
j = poly[i - 1]
m = 0
j //= 2
while j > 0:
j //= 2
m += 1
# Expand this bit pattern to separate components of the logical array INCLUD.
j = poly[i - 1]
includ = np.zeros(m)
for k in range(m, 0, -1):
j2 = j // 2
includ[k - 1] = (j != 2 * j2)
j = j2
# Calculate the remaining elements of row I as explained
# in Bratley and Fox, section 2.
for j in range(m + 1, maxcol + 1):
newv = v[i - 1, j - m - 1]
l = 1
for k in range(1, m + 1):
l *= 2
if includ[k - 1]:
newv = np.bitwise_xor(
int(newv), int(l * v[i - 1, j - k - 1]))
v[i - 1, j - 1] = newv
# Multiply columns of V by appropriate power of 2.
l = 1
for j in range(maxcol - 1, 0, -1):
l *= 2
v[0:dim_num, j - 1] = v[0:dim_num, j - 1] * l
# RECIPD is 1/(common denominator of the elements in V).
recipd = 1.0 / (2 * l)
lastq = np.zeros(dim_num)
seed = int(np.floor(seed))
if seed < 0:
seed = 0
l = 1
if seed == 0:
lastq = np.zeros(dim_num)
elif seed == seed_save + 1:
# Find the position of the right-hand zero in SEED.
l = i4_bit_lo0(seed)
elif seed <= seed_save:
seed_save = 0
lastq = np.zeros(dim_num)
for seed_temp in range(int(seed_save), int(seed)):
l = i4_bit_lo0(seed_temp)
for i in range(1, dim_num + 1):
lastq[i - 1] = np.bitwise_xor(
int(lastq[i - 1]), int(v[i - 1, l - 1]))
l = i4_bit_lo0(seed)
elif seed_save + 1 < seed:
for seed_temp in range(int(seed_save + 1), int(seed)):
l = i4_bit_lo0(seed_temp)
for i in range(1, dim_num + 1):
lastq[i - 1] = np.bitwise_xor(
int(lastq[i - 1]), int(v[i - 1, l - 1]))
l = i4_bit_lo0(seed)
# Check that the user is not calling too many times!
if maxcol < l:
print('I4_SOBOL - Fatal error!')
print(' Too many calls!')
print(' MAXCOL = %d\n' % maxcol)
print(' L = %d\n' % l)
return
# Calculate the new components of QUASI.
quasi = np.zeros(dim_num)
for i in range(1, dim_num + 1):
quasi[i - 1] = lastq[i - 1] * recipd
lastq[i - 1] = np.bitwise_xor(
int(lastq[i - 1]), int(v[i - 1, l - 1]))
seed_save = seed
seed += 1
return [quasi, seed]
def i4_uniform(a, b, seed):
"""
i4_uniform returns a scaled pseudorandom I4.
Discussion:
The pseudorandom number will be scaled to be uniformly distributed
between A and B.
Reference:
Paul Bratley, Bennett Fox, Linus Schrage,
A Guide to Simulation,
Springer Verlag, pages 201-202, 1983.
Pierre L'Ecuyer,
Random Number Generation,
in Handbook of Simulation,
edited by Jerry Banks,
Wiley Interscience, page 95, 1998.
Bennett Fox,
Algorithm 647:
Implementation and Relative Efficiency of Quasirandom
Sequence Generators,
ACM Transactions on Mathematical Software,
Volume 12, Number 4, pages 362-376, 1986.
Peter Lewis, Allen Goodman, James Miller
A Pseudo-Random Number Generator for the System/360,
IBM Systems Journal,
Volume 8, pages 136-143, 1969.
Parameters:
Input, integer A, B, the minimum and maximum acceptable values.
Input, integer SEED, a seed for the random number generator.
Output, integer C, the randomly chosen integer.
Output, integer SEED, the updated seed.
"""
if seed == 0:
print('I4_UNIFORM - Fatal error!')
print(' Input SEED = 0!')
seed = np.floor(seed)
a = round(a)
b = round(b)
seed = np.mod(seed, 2147483647)
if seed < 0:
seed += 2147483647
k = seed // 127773
seed = 16807 * (seed - k * 127773) - k * 2836
if seed < 0:
seed += 2147483647
r = seed * 4.656612875E-10
# Scale R to lie between A-0.5 and B+0.5.
r = (1.0 - r) * (min(a, b) - 0.5) + r * (max(a, b) + 0.5)
# Use rounding to convert R to an integer between A and B.
value = round(r)
value = max(value, min(a, b))
value = min(value, max(a, b))
c = value
return [int(c), int(seed)]
def prime_ge(n):
"""
PRIME_GE returns the smallest prime greater than or equal to N.
Example:
+-----+---------
| N | PRIME_GE
+-----+---------
| -10 | 2
| 1 | 2
| 2 | 2
| 3 | 3
| 4 | 5
| 5 | 5
| 6 | 7
| 7 | 7
| 8 | 11
| 9 | 11
| 10 | 11
Parameters:
Input, integer N, the number to be bounded.
Output, integer P, the smallest prime number that is greater
than or equal to N.
"""
p = max(np.ceil(n), 2)
while not is_prime(p):
p += 1
return p
def is_prime(n):
"""
is_prime returns True if N is a prime number, False otherwise
Parameters:
Input, integer N, the number to be checked.
Output, boolean value, True or False
"""
if n != int(n) or n < 2:
return False
if n == 2 or n == 3:
return True
if n % 2 == 0 or n % 3 == 0:
return False
# All primes >3 are of the form 6n+1 or 6n+5 (6n, 6n+2, 6n+4 are 2-divisible, 6n+3 is 3-divisible)
p = 5
root = int(np.ceil(np.sqrt(n)))
while p <= root:
if n % p == 0 or n % (p + 2) == 0:
return False
p += 6
return True