-
Notifications
You must be signed in to change notification settings - Fork 1
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
[NA] B2KKg decay #74
Labels
✨ Feature
New feature added to the package
Comments
For validation, we'd need a few point (
|
A quick attempt to code fails to reproduce the paper plots ### A Pluto.jl notebook ###
# v0.19.42
using Markdown
using InteractiveUtils
# ╔═╡ 465dc2a2-2ce3-11ef-3449-59c4261d85ad
# ╠═╡ show_logs = false
begin
using Pkg
Pkg.activate()
#
using DataFrames
using ThreeBodyDecays
using HadronicLineshapes
using Plots
using QuadGK
end
# ╔═╡ 757bf6cb-c729-4b70-91a6-2ba4212b4948
begin
const mK = 0.458
const mB = 5.4
end
# ╔═╡ b33bf712-90b3-4295-9a52-16a4ac68011a
begin
ms = ThreeBodyMasses(mK,mK,0; m0=mB)
two_js = ThreeBodySpins(0,0,2; two_h0=0)
tbs = ThreeBodySystem(ms, two_js)
end;
# ╔═╡ 7e257210-e8ec-47ae-8c20-3304c0398c7f
σs = x2σs([0.1, 0.2], ms; k=3)
# ╔═╡ e5b22100-c3e9-436e-b252-87ed18fb8f22
let two_j = 2
dc = DecayChain(;
k=3, two_j, tbs,
Xlineshape=identity,
Hij=NoRecoupling(0,0),
HRk=ParityRecoupling(2,2,false))
#
amplitude(dc, σs, (0,0,+2,0)) == amplitude(dc, σs, (0,0,-2,0))
end
# ╔═╡ 7c72fed9-f2b5-4de4-a5ff-2244c48687fb
df = [
(j = 1, X = (m = 1.019, Γ = 4.249e-3), c=10*exp(0)),
(j = 2, X = (m = 1.5704, Γ = 86e-3), c=4.6*exp(0)),
(j = 1, X = (m = 1.689, Γ = 211e-3), c=2.4*exp(137/180*π)),
(j = 2, X = (m = 1.2755, Γ = 186.6e-3), c=1.07*exp(-55/180*π)),
(j = 3, X = (m = 1.854, Γ = 78e-3), c=0.61*exp(-61/180*π)),
(j = 2, X = (m = 2.011, Γ = 202e-3), c=0.74*exp(43/180*π)),
(j = 1, X = σ->1.0, c=0.79)
] |> DataFrame
# ╔═╡ fa2964e8-61ff-42de-b264-10cd16efea32
df_l = transform(df, [:X, :j] => ByRow() do x, l
!(x isa NamedTuple{(:m, :Γ)}) && return x
scatt = BreitWigner(; x.m, x.Γ, ma=mK, mb=mK, l, d=3.0)
ff_decay = BlattWeisskopf{l}(3.0)(breakup_ij(ms; k=3))
ff_prod = BlattWeisskopf{l-1}(5.0)(breakup_Rk(ms; k=3))
norm = ff_decay(x.m^2) * ff_prod(x.m^2) * sqrt(2l+1)
scatt * ff_decay * ff_prod * (1/norm)
end => :X);
# ╔═╡ 9ddfaefb-1a39-4ba3-97dc-3f843e829e81
df_ch = transform(df_l, [:X, :j] => ByRow() do X, l
DecayChain(;
k=3, two_j=x2(l), tbs,
Xlineshape=X,
Hij=NoRecoupling(0,0),
HRk=ParityRecoupling(2,2,false))
end => :chain);
# ╔═╡ 3b446004-609c-420c-b67e-31c2ff37242c
model = ThreeBodyDecay(
"chain".*string.(1:size(df_ch,1)) .=> zip(df_ch.c, df_ch.chain));
# ╔═╡ f071e9ba-31ec-4927-8fbb-85b9c0bf4b52
unpolarized_intensity(model, σs)
# ╔═╡ 4c298f52-d0c4-4d25-be40-ef7082028dba
begin
plot(1.05, 2.8) do mk
I = Base.Fix1(unpolarized_intensity, model)
integrand = projection_integrand(I, masses(model), mk^2; k = 3)
mk * quadgk(integrand, 0, 1)[1]
end
for i in 1:length(model)
plot!(1.05, 2.8) do mk
I = Base.Fix1(unpolarized_intensity, model[i])
integrand = projection_integrand(I, masses(model), mk^2; k = 3)
mk * quadgk(integrand, 0, 1)[1]
end
end
plot!(yscale=:log10)
end
# ╔═╡ Cell order:
# ╠═465dc2a2-2ce3-11ef-3449-59c4261d85ad
# ╠═757bf6cb-c729-4b70-91a6-2ba4212b4948
# ╠═b33bf712-90b3-4295-9a52-16a4ac68011a
# ╠═7e257210-e8ec-47ae-8c20-3304c0398c7f
# ╠═e5b22100-c3e9-436e-b252-87ed18fb8f22
# ╠═7c72fed9-f2b5-4de4-a5ff-2244c48687fb
# ╠═fa2964e8-61ff-42de-b264-10cd16efea32
# ╠═9ddfaefb-1a39-4ba3-97dc-3f843e829e81
# ╠═3b446004-609c-420c-b67e-31c2ff37242c
# ╠═f071e9ba-31ec-4927-8fbb-85b9c0bf4b52
# ╠═4c298f52-d0c4-4d25-be40-ef7082028dba |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
Reference
New LHCb paper on B2KKg is out
https://inspirehep.net/literature/2794646
Model content
Only resonances in KK,
Lineshapes
While the lineshape is tricky, it's kind of
BW
otimes Gauss`,The text was updated successfully, but these errors were encountered: