-
Notifications
You must be signed in to change notification settings - Fork 1
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
[NA] B2Kmumu #76
Comments
The complication here is that I am afraid that we do not have a Mathematica model of the PDF. Finally there are many numerical tricks used to give numerical stability of the PDF both for the normalisation integrals and for the evaluation of the likelihood. The code implementing the PDF is in a GitLab repo. This code is no beauty though. |
@dvandyk do you have by chance a Mathematica code that evaluates the matrix element in terms of theta, mKpi, and Qˆ2? |
Thanks @egede! Dependence on qˆ2 is not a bad complication: one should consider the process as a four-body decay, B->K* X with K*->Kpi, and X->mu+mu-. The lineshapes of K* and X are somewhat complicated, but likely possible to figure out. A proper computation of signal PDF in LHCb requires resolution, however, the physical model itself does not need to know about detector effects. One would start by encoding the model for the decay. So, not resolution and numerical tricks needed at the first step. |
@mmikhasenko Sorry, I do not have any Mathematica notebook that could provide the predictions that you are looking for. |
Here is a paper,
https://inspirehep.net/literature/2795535
It uses conventions of Altmannshofer et al., to build the amplitude:
Steps to encode:
How to start
The text was updated successfully, but these errors were encountered: