-
Notifications
You must be signed in to change notification settings - Fork 25
/
Copy pathclassifier.py
218 lines (174 loc) · 7.19 KB
/
classifier.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
import argparse
import datetime as dt
import os
import numpy as np
import tensorflow as tf
from src.dataset import deserialize_data
from src.models import (build_multinomial_regression,
build_multinomial_regression_l1,
build_multinomial_regression_l1_l2,
build_multinomial_regression_l2, build_resnet,
build_simple_cnn, build_simple_nn)
AUTOTUNE = tf.data.experimental.AUTOTUNE
BATCH_SIZE = 32
# Upsampling / FFHQ
# TRAIN_SIZE = 20_000
# VAL_SIZE = 2_000
# TEST_SIZE = 10_000
# complete size
TRAIN_SIZE = 500_000
VAL_SIZE = 50_000
TEST_SIZE = 150_000
CLASSES = 5
CHANNEL_DIM = 3
INPUT_SHAPE = [128, 128, CHANNEL_DIM]
# Fix for consistent results
tf.random.set_seed(1)
def load_tfrecord(path, train=True, unbounded=True):
"""Load tfrecords."""
raw_image_dataset = tf.data.TFRecordDataset(path)
dataset = raw_image_dataset.map(lambda x: deserialize_data(
x, shape=INPUT_SHAPE), num_parallel_calls=AUTOTUNE)
if train:
dataset = dataset.take(TRAIN_SIZE)
dataset = dataset.batch(BATCH_SIZE)
if unbounded:
dataset = dataset.repeat()
return dataset.prefetch(AUTOTUNE)
def build_model(args):
input_shape = INPUT_SHAPE
mirrored_strategy = tf.distribute.MirroredStrategy()
learning_rate = 0.001
# select model
with mirrored_strategy.scope():
if args.MODEL == "resnet":
model = build_resnet(input_shape, CLASSES)
elif args.MODEL == "nn":
model = build_simple_nn(input_shape, CLASSES, l2=args.l2)
elif args.MODEL == "cnn":
model = build_simple_cnn(input_shape, CLASSES)
elif args.MODEL == "log":
model = build_multinomial_regression(
input_shape, CLASSES)
elif args.MODEL == "log1":
model = build_multinomial_regression_l1(
input_shape, CLASSES, l_1=args.l1)
elif args.MODEL == "log2":
model = build_multinomial_regression_l2(
input_shape, CLASSES, l_2=args.l2)
elif args.MODEL == "log3":
model = build_multinomial_regression_l1_l2(
input_shape, CLASSES, l_1=args.l1, l_2=args.l2)
else:
raise NotImplementedError(
"Error model you selected not available!")
if CLASSES == 1:
loss = tf.keras.losses.binary_crossentropy
else:
loss = tf.keras.losses.sparse_categorical_crossentropy
metrics = ["acc"]
model.compile(optimizer=tf.keras.optimizers.Adam(learning_rate=learning_rate, ),
loss=loss,
metrics=metrics)
model_name = f"{args.MODEL}_{dt.datetime.now().strftime('%Y-%m-%d-%H-%M-%S')}_batch_{args.batch_size}_learning_rate_{learning_rate}"
return model, model_name
def train(args):
train_dataset = load_tfrecord(args.TRAIN_DATASET)
val_dataset = load_tfrecord(args.VAL_DATASET)
model, model_name = build_model(args)
log_path = f"./log/{model_name}"
ckpt_dir = f"./ckpt/{model_name}/"
model_dir = f"./final_models/{model_name}/"
os.makedirs(ckpt_dir)
os.makedirs(model_dir)
update_freq = 50
if args.debug:
callbacks = None
else:
callbacks = [
tf.keras.callbacks.TensorBoard(
log_dir=log_path,
update_freq=update_freq,
),
tf.keras.callbacks.EarlyStopping(
monitor='val_loss',
patience=args.early_stopping,
restore_best_weights=True,
),
]
model.summary()
model.fit(train_dataset, epochs=args.epochs, steps_per_epoch=TRAIN_SIZE // BATCH_SIZE,
validation_data=val_dataset,
validation_steps=VAL_SIZE // BATCH_SIZE,
callbacks=callbacks)
_, eval_accuracy = model.evaluate(
val_dataset, steps=VAL_SIZE // BATCH_SIZE, verbose=0)
return model, eval_accuracy, model_dir
def train_and_save_model(args):
model, eval_accuracy, model_dir = train(args)
print(
f"Saving model with accuracy - {eval_accuracy:.2%} - to {model_dir}")
model.save(model_dir, save_format="tf")
def test(args):
test_dataset = load_tfrecord(args.TEST_DATASET, train=False)
# load model
model = tf.keras.models.load_model(args.MODEL)
model.summary()
model.evaluate(test_dataset, steps=TEST_SIZE // BATCH_SIZE)
def main(args):
args.grayscale = True
if args.mode == "train":
train_and_save_model(args)
elif args.mode == "test":
test(args)
else:
raise NotImplementedError("Specified non valid mode!")
def parse_args():
global BATCH_SIZE, INPUT_SHAPE, CLASSES, CHANNEL_DIM
parser = argparse.ArgumentParser()
parser.add_argument(
"--size", "-s", help="Images to load.", type=int, default=None)
commands = parser.add_subparsers(help="Mode {train|test}.", dest="mode")
train = commands.add_parser("train")
epochs = 50
train.add_argument(
"MODEL", help="Select model to train {resnet, cnn, nn, log, log1, log2, log3}.", type=str)
train.add_argument("TRAIN_DATASET", help="Dataset to load.", type=str)
train.add_argument("VAL_DATASET", help="Dataset to load.", type=str)
train.add_argument("--debug", "-d", help="Debug mode.",
action="store_true")
train.add_argument(
"--epochs", "-e", help=f"Epochs to train for; Default: {epochs}.", type=int, default=epochs)
train.add_argument("--image_size",
help=f"Image size. Default: {INPUT_SHAPE}", type=int, default=128)
train.add_argument("--early_stopping",
help=f"Early stopping criteria. Default: 5", type=int, default=5)
train.add_argument("--classes",
help=f"Classes. Default: {CLASSES}", type=int, default=CLASSES)
train.add_argument("--grayscale", "-g",
help=f"Train on grayscaled images.", action="store_true")
train.add_argument("--batch_size", "-b",
help=f"Batch size. Default: {BATCH_SIZE}", type=int, default=BATCH_SIZE)
train.add_argument("--l1",
help=f"L1 reguralizer intensity. Default: 0.01", type=float, default=0.01)
train.add_argument("--l2",
help=f"L2 reguralizer intensity. Default: 0.01", type=float, default=0.01)
test = commands.add_parser("test")
test.add_argument("MODEL", help="Path to model.", type=str)
test.add_argument("TEST_DATASET", help="Dataset to load.", type=str)
test.add_argument("--image_size",
help=f"Image size. Default: {INPUT_SHAPE}", type=int, default=128)
test.add_argument("--grayscale", "-g",
help=f"Test on grayscaled images.", action="store_true")
test.add_argument("--batch_size", "-b",
help=f"Batch size. Default: {BATCH_SIZE}", type=int, default=BATCH_SIZE)
args = parser.parse_args()
BATCH_SIZE = args.batch_size
if args.grayscale:
CHANNEL_DIM = 1
INPUT_SHAPE = [args.image_size, args.image_size, CHANNEL_DIM]
if "classes" in args:
CLASSES = args.classes
return args
if __name__ == "__main__":
main(parse_args())