forked from Sherry-XLL/TedRec
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtedrec_Movies.out
323 lines (317 loc) · 16 KB
/
tedrec_Movies.out
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
command line args [-d Movies] will not be used in RecBole
08 Feb 13:47 INFO
General Hyper Parameters:
gpu_id = 4
use_gpu = True
seed = 2020
state = INFO
reproducibility = True
data_path = dataset/Movies
checkpoint_dir = saved
show_progress = False
save_dataset = False
dataset_save_path = None
save_dataloaders = False
dataloaders_save_path = None
log_wandb = False
Training Hyper Parameters:
epochs = 300
train_batch_size = 2048
learner = adam
learning_rate = 0.001
train_neg_sample_args = {'distribution': 'none', 'sample_num': 'none', 'alpha': 'none', 'dynamic': False, 'candidate_num': 0}
eval_step = 1
stopping_step = 10
clip_grad_norm = None
weight_decay = 0.0
loss_decimal_place = 4
Evaluation Hyper Parameters:
eval_args = {'split': {'LS': 'valid_and_test'}, 'order': 'TO', 'group_by': 'user', 'mode': {'valid': 'full', 'test': 'full'}}
repeatable = True
metrics = ['Recall', 'NDCG']
topk = [10, 20]
valid_metric = NDCG@10
valid_metric_bigger = True
eval_batch_size = 2048
metric_decimal_place = 4
Dataset Hyper Parameters:
field_separator =
seq_separator =
USER_ID_FIELD = user_id
ITEM_ID_FIELD = item_id
RATING_FIELD = rating
TIME_FIELD = timestamp
seq_len = None
LABEL_FIELD = label
threshold = None
NEG_PREFIX = neg_
load_col = {'inter': ['user_id', 'item_id_list', 'item_id']}
unload_col = None
unused_col = None
additional_feat_suffix = None
rm_dup_inter = None
val_interval = None
filter_inter_by_user_or_item = True
user_inter_num_interval = [0,inf)
item_inter_num_interval = [0,inf)
alias_of_user_id = None
alias_of_item_id = ['item_id_list']
alias_of_entity_id = None
alias_of_relation_id = None
preload_weight = None
normalize_field = None
normalize_all = None
ITEM_LIST_LENGTH_FIELD = item_length
LIST_SUFFIX = _list
MAX_ITEM_LIST_LENGTH = 50
POSITION_FIELD = position_id
HEAD_ENTITY_ID_FIELD = head_id
TAIL_ENTITY_ID_FIELD = tail_id
RELATION_ID_FIELD = relation_id
ENTITY_ID_FIELD = entity_id
benchmark_filename = ['train', 'valid', 'test']
Other Hyper Parameters:
worker = 0
wandb_project = recbole
shuffle = True
require_pow = False
enable_amp = False
enable_scaler = False
transform = None
numerical_features = []
discretization = None
kg_reverse_r = False
entity_kg_num_interval = [0,inf)
relation_kg_num_interval = [0,inf)
MODEL_TYPE = ModelType.SEQUENTIAL
n_layers = 2
n_heads = 2
hidden_size = 300
inner_size = 256
hidden_dropout_prob = 0.5
attn_dropout_prob = 0.5
hidden_act = gelu
layer_norm_eps = 1e-12
initializer_range = 0.02
loss_type = CE
plm_suffix = feat1CLS
plm_size = 768
adaptor_dropout_prob = 0.2
adaptor_layers = [768, 300]
temperature = 0.07
n_exps = 8
MODEL_INPUT_TYPE = InputType.POINTWISE
eval_type = EvaluatorType.RANKING
single_spec = True
local_rank = 0
device = cuda
valid_neg_sample_args = {'distribution': 'uniform', 'sample_num': 'none'}
test_neg_sample_args = {'distribution': 'uniform', 'sample_num': 'none'}
08 Feb 13:48 INFO Movies
The number of users: 281701
Average actions of users: 10.454494142705006
The number of items: 59204
Average actions of items: 49.744624427816156
The number of inters: 2945031
The sparsity of the dataset: 99.98234163733754%
Remain Fields: ['user_id', 'item_id_list', 'item_id', 'item_length']
08 Feb 13:49 INFO [Training]: train_batch_size = [2048] train_neg_sample_args: [{'distribution': 'none', 'sample_num': 'none', 'alpha': 'none', 'dynamic': False, 'candidate_num': 0}]
08 Feb 13:49 INFO [Evaluation]: eval_batch_size = [2048] eval_args: [{'split': {'LS': 'valid_and_test'}, 'order': 'TO', 'group_by': 'user', 'mode': {'valid': 'full', 'test': 'full'}}]
08 Feb 13:49 INFO TedRec(
(item_embedding): Embedding(59204, 300, padding_idx=0)
(position_embedding): Embedding(50, 300)
(trm_encoder): TransformerEncoder(
(layer): ModuleList(
(0-1): 2 x TransformerLayer(
(multi_head_attention): MultiHeadAttention(
(query): Linear(in_features=300, out_features=300, bias=True)
(key): Linear(in_features=300, out_features=300, bias=True)
(value): Linear(in_features=300, out_features=300, bias=True)
(softmax): Softmax(dim=-1)
(attn_dropout): Dropout(p=0.5, inplace=False)
(dense): Linear(in_features=300, out_features=300, bias=True)
(LayerNorm): LayerNorm((300,), eps=1e-12, elementwise_affine=True)
(out_dropout): Dropout(p=0.5, inplace=False)
)
(feed_forward): FeedForward(
(dense_1): Linear(in_features=300, out_features=256, bias=True)
(dense_2): Linear(in_features=256, out_features=300, bias=True)
(LayerNorm): LayerNorm((300,), eps=1e-12, elementwise_affine=True)
(dropout): Dropout(p=0.5, inplace=False)
)
)
)
)
(LayerNorm): LayerNorm((300,), eps=1e-12, elementwise_affine=True)
(dropout): Dropout(p=0.5, inplace=False)
(loss_fct): CrossEntropyLoss()
(plm_embedding): Embedding(59204, 768, padding_idx=0)
(item_gating): Linear(in_features=300, out_features=1, bias=True)
(fusion_gating): Linear(in_features=300, out_features=1, bias=True)
(moe_adaptor): MoEAdaptorLayer(
(experts): ModuleList(
(0-7): 8 x DTRLayer(
(dropout): Dropout(p=0.2, inplace=False)
(lin): Linear(in_features=768, out_features=300, bias=False)
)
)
)
)
Trainable parameters: 20988802
08 Feb 13:54 INFO epoch 0 training [time: 319.96s, train loss: 10346.3591]
08 Feb 13:54 INFO epoch 0 evaluating [time: 19.76s, valid_score: 0.096400]
08 Feb 13:54 INFO valid result:
recall@10 : 0.1428 recall@20 : 0.1809 ndcg@10 : 0.0964 ndcg@20 : 0.106
08 Feb 13:55 INFO Saving current: saved/TedRec-Feb-08-2024_13-49-19.pth
08 Feb 14:00 INFO epoch 1 training [time: 317.52s, train loss: 9384.8327]
08 Feb 14:00 INFO epoch 1 evaluating [time: 18.58s, valid_score: 0.106800]
08 Feb 14:00 INFO valid result:
recall@10 : 0.157 recall@20 : 0.1985 ndcg@10 : 0.1068 ndcg@20 : 0.1172
08 Feb 14:00 INFO Saving current: saved/TedRec-Feb-08-2024_13-49-19.pth
08 Feb 14:05 INFO epoch 2 training [time: 317.18s, train loss: 9116.0584]
08 Feb 14:06 INFO epoch 2 evaluating [time: 20.39s, valid_score: 0.110600]
08 Feb 14:06 INFO valid result:
recall@10 : 0.1621 recall@20 : 0.2056 ndcg@10 : 0.1106 ndcg@20 : 0.1215
08 Feb 14:06 INFO Saving current: saved/TedRec-Feb-08-2024_13-49-19.pth
08 Feb 14:11 INFO epoch 3 training [time: 317.14s, train loss: 8965.5448]
08 Feb 14:12 INFO epoch 3 evaluating [time: 19.49s, valid_score: 0.113400]
08 Feb 14:12 INFO valid result:
recall@10 : 0.1647 recall@20 : 0.2077 ndcg@10 : 0.1134 ndcg@20 : 0.1242
08 Feb 14:12 INFO Saving current: saved/TedRec-Feb-08-2024_13-49-19.pth
08 Feb 14:17 INFO epoch 4 training [time: 315.06s, train loss: 8864.0362]
08 Feb 14:17 INFO epoch 4 evaluating [time: 18.33s, valid_score: 0.114900]
08 Feb 14:17 INFO valid result:
recall@10 : 0.1667 recall@20 : 0.2106 ndcg@10 : 0.1149 ndcg@20 : 0.126
08 Feb 14:17 INFO Saving current: saved/TedRec-Feb-08-2024_13-49-19.pth
08 Feb 14:22 INFO epoch 5 training [time: 314.73s, train loss: 8787.1603]
08 Feb 14:23 INFO epoch 5 evaluating [time: 17.94s, valid_score: 0.116000]
08 Feb 14:23 INFO valid result:
recall@10 : 0.1676 recall@20 : 0.2112 ndcg@10 : 0.116 ndcg@20 : 0.127
08 Feb 14:23 INFO Saving current: saved/TedRec-Feb-08-2024_13-49-19.pth
08 Feb 14:28 INFO epoch 6 training [time: 312.21s, train loss: 8727.2880]
08 Feb 14:28 INFO epoch 6 evaluating [time: 16.88s, valid_score: 0.116500]
08 Feb 14:28 INFO valid result:
recall@10 : 0.1679 recall@20 : 0.2114 ndcg@10 : 0.1165 ndcg@20 : 0.1275
08 Feb 14:28 INFO Saving current: saved/TedRec-Feb-08-2024_13-49-19.pth
08 Feb 14:34 INFO epoch 7 training [time: 311.91s, train loss: 8677.9772]
08 Feb 14:34 INFO epoch 7 evaluating [time: 16.97s, valid_score: 0.117400]
08 Feb 14:34 INFO valid result:
recall@10 : 0.1688 recall@20 : 0.2123 ndcg@10 : 0.1174 ndcg@20 : 0.1283
08 Feb 14:34 INFO Saving current: saved/TedRec-Feb-08-2024_13-49-19.pth
08 Feb 14:39 INFO epoch 8 training [time: 311.39s, train loss: 8634.7201]
08 Feb 14:39 INFO epoch 8 evaluating [time: 16.72s, valid_score: 0.118400]
08 Feb 14:39 INFO valid result:
recall@10 : 0.1698 recall@20 : 0.2138 ndcg@10 : 0.1184 ndcg@20 : 0.1294
08 Feb 14:39 INFO Saving current: saved/TedRec-Feb-08-2024_13-49-19.pth
08 Feb 14:45 INFO epoch 9 training [time: 312.35s, train loss: 8597.4139]
08 Feb 14:45 INFO epoch 9 evaluating [time: 16.98s, valid_score: 0.118600]
08 Feb 14:45 INFO valid result:
recall@10 : 0.1697 recall@20 : 0.2138 ndcg@10 : 0.1186 ndcg@20 : 0.1297
08 Feb 14:45 INFO Saving current: saved/TedRec-Feb-08-2024_13-49-19.pth
08 Feb 14:50 INFO epoch 10 training [time: 311.93s, train loss: 8562.4778]
08 Feb 14:50 INFO epoch 10 evaluating [time: 16.97s, valid_score: 0.119500]
08 Feb 14:50 INFO valid result:
recall@10 : 0.1706 recall@20 : 0.2142 ndcg@10 : 0.1195 ndcg@20 : 0.1305
08 Feb 14:50 INFO Saving current: saved/TedRec-Feb-08-2024_13-49-19.pth
08 Feb 14:56 INFO epoch 11 training [time: 311.71s, train loss: 8530.0602]
08 Feb 14:56 INFO epoch 11 evaluating [time: 16.88s, valid_score: 0.119500]
08 Feb 14:56 INFO valid result:
recall@10 : 0.1706 recall@20 : 0.2144 ndcg@10 : 0.1195 ndcg@20 : 0.1305
08 Feb 14:56 INFO Saving current: saved/TedRec-Feb-08-2024_13-49-19.pth
08 Feb 15:01 INFO epoch 12 training [time: 311.78s, train loss: 8501.5283]
08 Feb 15:01 INFO epoch 12 evaluating [time: 14.61s, valid_score: 0.119900]
08 Feb 15:01 INFO valid result:
recall@10 : 0.1708 recall@20 : 0.2144 ndcg@10 : 0.1199 ndcg@20 : 0.1308
08 Feb 15:01 INFO Saving current: saved/TedRec-Feb-08-2024_13-49-19.pth
08 Feb 15:07 INFO epoch 13 training [time: 309.41s, train loss: 8476.8737]
08 Feb 15:07 INFO epoch 13 evaluating [time: 12.69s, valid_score: 0.120100]
08 Feb 15:07 INFO valid result:
recall@10 : 0.1711 recall@20 : 0.2148 ndcg@10 : 0.1201 ndcg@20 : 0.1311
08 Feb 15:07 INFO Saving current: saved/TedRec-Feb-08-2024_13-49-19.pth
08 Feb 15:12 INFO epoch 14 training [time: 310.41s, train loss: 8451.9680]
08 Feb 15:12 INFO epoch 14 evaluating [time: 13.46s, valid_score: 0.120100]
08 Feb 15:12 INFO valid result:
recall@10 : 0.1712 recall@20 : 0.2137 ndcg@10 : 0.1201 ndcg@20 : 0.1308
08 Feb 15:12 INFO Saving current: saved/TedRec-Feb-08-2024_13-49-19.pth
08 Feb 15:17 INFO epoch 15 training [time: 308.56s, train loss: 8430.1694]
08 Feb 15:18 INFO epoch 15 evaluating [time: 14.18s, valid_score: 0.120600]
08 Feb 15:18 INFO valid result:
recall@10 : 0.171 recall@20 : 0.2147 ndcg@10 : 0.1206 ndcg@20 : 0.1316
08 Feb 15:18 INFO Saving current: saved/TedRec-Feb-08-2024_13-49-19.pth
08 Feb 15:23 INFO epoch 16 training [time: 309.84s, train loss: 8408.4112]
08 Feb 15:23 INFO epoch 16 evaluating [time: 13.57s, valid_score: 0.120400]
08 Feb 15:23 INFO valid result:
recall@10 : 0.1706 recall@20 : 0.214 ndcg@10 : 0.1204 ndcg@20 : 0.1313
08 Feb 15:28 INFO epoch 17 training [time: 309.74s, train loss: 8389.1623]
08 Feb 15:29 INFO epoch 17 evaluating [time: 11.78s, valid_score: 0.120600]
08 Feb 15:29 INFO valid result:
recall@10 : 0.171 recall@20 : 0.2142 ndcg@10 : 0.1206 ndcg@20 : 0.1315
08 Feb 15:29 INFO Saving current: saved/TedRec-Feb-08-2024_13-49-19.pth
08 Feb 15:34 INFO epoch 18 training [time: 310.81s, train loss: 8369.2713]
08 Feb 15:34 INFO epoch 18 evaluating [time: 12.09s, valid_score: 0.120200]
08 Feb 15:34 INFO valid result:
recall@10 : 0.1703 recall@20 : 0.2134 ndcg@10 : 0.1202 ndcg@20 : 0.1311
08 Feb 15:39 INFO epoch 19 training [time: 308.15s, train loss: 8351.7250]
08 Feb 15:39 INFO epoch 19 evaluating [time: 13.22s, valid_score: 0.120500]
08 Feb 15:39 INFO valid result:
recall@10 : 0.1703 recall@20 : 0.2134 ndcg@10 : 0.1205 ndcg@20 : 0.1313
08 Feb 15:44 INFO epoch 20 training [time: 308.99s, train loss: 8334.0491]
08 Feb 15:45 INFO epoch 20 evaluating [time: 12.37s, valid_score: 0.120500]
08 Feb 15:45 INFO valid result:
recall@10 : 0.1702 recall@20 : 0.2132 ndcg@10 : 0.1205 ndcg@20 : 0.1313
08 Feb 15:50 INFO epoch 21 training [time: 309.28s, train loss: 8317.5308]
08 Feb 15:50 INFO epoch 21 evaluating [time: 12.32s, valid_score: 0.120700]
08 Feb 15:50 INFO valid result:
recall@10 : 0.1702 recall@20 : 0.2131 ndcg@10 : 0.1207 ndcg@20 : 0.1315
08 Feb 15:50 INFO Saving current: saved/TedRec-Feb-08-2024_13-49-19.pth
08 Feb 15:55 INFO epoch 22 training [time: 309.29s, train loss: 8300.4898]
08 Feb 15:55 INFO epoch 22 evaluating [time: 13.34s, valid_score: 0.120100]
08 Feb 15:55 INFO valid result:
recall@10 : 0.17 recall@20 : 0.2125 ndcg@10 : 0.1201 ndcg@20 : 0.1308
08 Feb 16:01 INFO epoch 23 training [time: 308.84s, train loss: 8285.4433]
08 Feb 16:01 INFO epoch 23 evaluating [time: 14.55s, valid_score: 0.120600]
08 Feb 16:01 INFO valid result:
recall@10 : 0.1701 recall@20 : 0.2122 ndcg@10 : 0.1206 ndcg@20 : 0.1312
08 Feb 16:06 INFO epoch 24 training [time: 309.04s, train loss: 8269.9012]
08 Feb 16:06 INFO epoch 24 evaluating [time: 13.26s, valid_score: 0.120400]
08 Feb 16:06 INFO valid result:
recall@10 : 0.1699 recall@20 : 0.2123 ndcg@10 : 0.1204 ndcg@20 : 0.1311
08 Feb 16:11 INFO epoch 25 training [time: 309.04s, train loss: 8255.2229]
08 Feb 16:12 INFO epoch 25 evaluating [time: 12.65s, valid_score: 0.120200]
08 Feb 16:12 INFO valid result:
recall@10 : 0.1696 recall@20 : 0.212 ndcg@10 : 0.1202 ndcg@20 : 0.1309
08 Feb 16:17 INFO epoch 26 training [time: 310.20s, train loss: 8240.3680]
08 Feb 16:17 INFO epoch 26 evaluating [time: 12.59s, valid_score: 0.119400]
08 Feb 16:17 INFO valid result:
recall@10 : 0.169 recall@20 : 0.2118 ndcg@10 : 0.1194 ndcg@20 : 0.1302
08 Feb 16:22 INFO epoch 27 training [time: 309.39s, train loss: 8226.9674]
08 Feb 16:22 INFO epoch 27 evaluating [time: 12.77s, valid_score: 0.120000]
08 Feb 16:22 INFO valid result:
recall@10 : 0.1692 recall@20 : 0.2114 ndcg@10 : 0.12 ndcg@20 : 0.1306
08 Feb 16:27 INFO epoch 28 training [time: 308.74s, train loss: 8214.3342]
08 Feb 16:28 INFO epoch 28 evaluating [time: 12.40s, valid_score: 0.119500]
08 Feb 16:28 INFO valid result:
recall@10 : 0.1685 recall@20 : 0.2105 ndcg@10 : 0.1195 ndcg@20 : 0.13
08 Feb 16:33 INFO epoch 29 training [time: 309.26s, train loss: 8201.8375]
08 Feb 16:33 INFO epoch 29 evaluating [time: 12.11s, valid_score: 0.119500]
08 Feb 16:33 INFO valid result:
recall@10 : 0.1685 recall@20 : 0.2103 ndcg@10 : 0.1195 ndcg@20 : 0.1301
08 Feb 16:38 INFO epoch 30 training [time: 309.32s, train loss: 8190.5150]
08 Feb 16:38 INFO epoch 30 evaluating [time: 16.09s, valid_score: 0.119100]
08 Feb 16:38 INFO valid result:
recall@10 : 0.1681 recall@20 : 0.21 ndcg@10 : 0.1191 ndcg@20 : 0.1297
08 Feb 16:44 INFO epoch 31 training [time: 309.03s, train loss: 8178.3845]
08 Feb 16:44 INFO epoch 31 evaluating [time: 13.03s, valid_score: 0.118900]
08 Feb 16:44 INFO valid result:
recall@10 : 0.1679 recall@20 : 0.2099 ndcg@10 : 0.1189 ndcg@20 : 0.1295
08 Feb 16:49 INFO epoch 32 training [time: 309.21s, train loss: 8166.8249]
08 Feb 16:49 INFO epoch 32 evaluating [time: 12.90s, valid_score: 0.118900]
08 Feb 16:49 INFO valid result:
recall@10 : 0.1675 recall@20 : 0.2097 ndcg@10 : 0.1189 ndcg@20 : 0.1296
08 Feb 16:49 INFO Finished training, best eval result in epoch 21
08 Feb 16:49 INFO Loading model structure and parameters from saved/TedRec-Feb-08-2024_13-49-19.pth
08 Feb 16:49 INFO best valid : OrderedDict([('recall@10', 0.1702), ('recall@20', 0.2131), ('ndcg@10', 0.1207), ('ndcg@20', 0.1315)])
08 Feb 16:49 INFO test result: OrderedDict([('recall@10', 0.1611), ('recall@20', 0.1998), ('ndcg@10', 0.1188), ('ndcg@20', 0.1285)])
08 Feb 16:49 INFO 0.1611 0.1998 0.1188 0.1285
Namespace(d='Movies')
['props/TedRec.yaml', 'props/overall.yaml']