forked from Sherry-XLL/TedRec
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtedrec_OR.out
333 lines (327 loc) · 16.5 KB
/
tedrec_OR.out
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
command line args [-d OR] will not be used in RecBole
08 Feb 13:47 INFO
General Hyper Parameters:
gpu_id = 1
use_gpu = True
seed = 2020
state = INFO
reproducibility = True
data_path = dataset/OR
checkpoint_dir = saved
show_progress = False
save_dataset = False
dataset_save_path = None
save_dataloaders = False
dataloaders_save_path = None
log_wandb = False
Training Hyper Parameters:
epochs = 300
train_batch_size = 2048
learner = adam
learning_rate = 0.001
train_neg_sample_args = {'distribution': 'none', 'sample_num': 'none', 'alpha': 'none', 'dynamic': False, 'candidate_num': 0}
eval_step = 1
stopping_step = 10
clip_grad_norm = None
weight_decay = 0.0
loss_decimal_place = 4
Evaluation Hyper Parameters:
eval_args = {'split': {'LS': 'valid_and_test'}, 'order': 'TO', 'group_by': 'user', 'mode': {'valid': 'full', 'test': 'full'}}
repeatable = True
metrics = ['Recall', 'NDCG']
topk = [10, 20]
valid_metric = NDCG@10
valid_metric_bigger = True
eval_batch_size = 2048
metric_decimal_place = 4
Dataset Hyper Parameters:
field_separator =
seq_separator =
USER_ID_FIELD = user_id
ITEM_ID_FIELD = item_id
RATING_FIELD = rating
TIME_FIELD = timestamp
seq_len = None
LABEL_FIELD = label
threshold = None
NEG_PREFIX = neg_
load_col = {'inter': ['user_id', 'item_id_list', 'item_id']}
unload_col = None
unused_col = None
additional_feat_suffix = None
rm_dup_inter = None
val_interval = None
filter_inter_by_user_or_item = True
user_inter_num_interval = [0,inf)
item_inter_num_interval = [0,inf)
alias_of_user_id = None
alias_of_item_id = ['item_id_list']
alias_of_entity_id = None
alias_of_relation_id = None
preload_weight = None
normalize_field = None
normalize_all = None
ITEM_LIST_LENGTH_FIELD = item_length
LIST_SUFFIX = _list
MAX_ITEM_LIST_LENGTH = 50
POSITION_FIELD = position_id
HEAD_ENTITY_ID_FIELD = head_id
TAIL_ENTITY_ID_FIELD = tail_id
RELATION_ID_FIELD = relation_id
ENTITY_ID_FIELD = entity_id
benchmark_filename = ['train', 'valid', 'test']
Other Hyper Parameters:
worker = 0
wandb_project = recbole
shuffle = True
require_pow = False
enable_amp = False
enable_scaler = False
transform = None
numerical_features = []
discretization = None
kg_reverse_r = False
entity_kg_num_interval = [0,inf)
relation_kg_num_interval = [0,inf)
MODEL_TYPE = ModelType.SEQUENTIAL
n_layers = 2
n_heads = 2
hidden_size = 300
inner_size = 256
hidden_dropout_prob = 0.5
attn_dropout_prob = 0.5
hidden_act = gelu
layer_norm_eps = 1e-12
initializer_range = 0.02
loss_type = CE
plm_suffix = feat1CLS
plm_size = 768
adaptor_dropout_prob = 0.2
adaptor_layers = [768, 300]
temperature = 0.07
n_exps = 8
MODEL_INPUT_TYPE = InputType.POINTWISE
eval_type = EvaluatorType.RANKING
single_spec = True
local_rank = 0
device = cuda
valid_neg_sample_args = {'distribution': 'uniform', 'sample_num': 'none'}
test_neg_sample_args = {'distribution': 'uniform', 'sample_num': 'none'}
08 Feb 13:47 INFO OR
The number of users: 16521
Average actions of users: 30.471307506053268
The number of items: 3470
Average actions of items: 145.10982992216776
The number of inters: 503386
The sparsity of the dataset: 99.12191748969568%
Remain Fields: ['user_id', 'item_id_list', 'item_id', 'item_length']
08 Feb 13:47 INFO [Training]: train_batch_size = [2048] train_neg_sample_args: [{'distribution': 'none', 'sample_num': 'none', 'alpha': 'none', 'dynamic': False, 'candidate_num': 0}]
08 Feb 13:47 INFO [Evaluation]: eval_batch_size = [2048] eval_args: [{'split': {'LS': 'valid_and_test'}, 'order': 'TO', 'group_by': 'user', 'mode': {'valid': 'full', 'test': 'full'}}]
08 Feb 13:47 INFO TedRec(
(item_embedding): Embedding(3470, 300, padding_idx=0)
(position_embedding): Embedding(50, 300)
(trm_encoder): TransformerEncoder(
(layer): ModuleList(
(0-1): 2 x TransformerLayer(
(multi_head_attention): MultiHeadAttention(
(query): Linear(in_features=300, out_features=300, bias=True)
(key): Linear(in_features=300, out_features=300, bias=True)
(value): Linear(in_features=300, out_features=300, bias=True)
(softmax): Softmax(dim=-1)
(attn_dropout): Dropout(p=0.5, inplace=False)
(dense): Linear(in_features=300, out_features=300, bias=True)
(LayerNorm): LayerNorm((300,), eps=1e-12, elementwise_affine=True)
(out_dropout): Dropout(p=0.5, inplace=False)
)
(feed_forward): FeedForward(
(dense_1): Linear(in_features=300, out_features=256, bias=True)
(dense_2): Linear(in_features=256, out_features=300, bias=True)
(LayerNorm): LayerNorm((300,), eps=1e-12, elementwise_affine=True)
(dropout): Dropout(p=0.5, inplace=False)
)
)
)
)
(LayerNorm): LayerNorm((300,), eps=1e-12, elementwise_affine=True)
(dropout): Dropout(p=0.5, inplace=False)
(loss_fct): CrossEntropyLoss()
(plm_embedding): Embedding(3470, 768, padding_idx=0)
(item_gating): Linear(in_features=300, out_features=1, bias=True)
(fusion_gating): Linear(in_features=300, out_features=1, bias=True)
(moe_adaptor): MoEAdaptorLayer(
(experts): ModuleList(
(0-7): 8 x DTRLayer(
(dropout): Dropout(p=0.2, inplace=False)
(lin): Linear(in_features=768, out_features=300, bias=False)
)
)
)
)
Trainable parameters: 4268602
08 Feb 13:48 INFO epoch 0 training [time: 58.27s, train loss: 1716.5112]
08 Feb 13:48 INFO epoch 0 evaluating [time: 1.00s, valid_score: 0.062900]
08 Feb 13:48 INFO valid result:
recall@10 : 0.128 recall@20 : 0.196 ndcg@10 : 0.0629 ndcg@20 : 0.0801
08 Feb 13:48 INFO Saving current: saved/TedRec-Feb-08-2024_13-47-27.pth
08 Feb 13:49 INFO epoch 1 training [time: 57.80s, train loss: 1609.9275]
08 Feb 13:49 INFO epoch 1 evaluating [time: 1.04s, valid_score: 0.093300]
08 Feb 13:49 INFO valid result:
recall@10 : 0.1728 recall@20 : 0.2545 ndcg@10 : 0.0933 ndcg@20 : 0.1138
08 Feb 13:49 INFO Saving current: saved/TedRec-Feb-08-2024_13-47-27.pth
08 Feb 13:50 INFO epoch 2 training [time: 58.35s, train loss: 1572.4450]
08 Feb 13:50 INFO epoch 2 evaluating [time: 1.00s, valid_score: 0.106200]
08 Feb 13:50 INFO valid result:
recall@10 : 0.1919 recall@20 : 0.279 ndcg@10 : 0.1062 ndcg@20 : 0.1281
08 Feb 13:50 INFO Saving current: saved/TedRec-Feb-08-2024_13-47-27.pth
08 Feb 13:51 INFO epoch 3 training [time: 58.20s, train loss: 1548.5904]
08 Feb 13:51 INFO epoch 3 evaluating [time: 1.05s, valid_score: 0.112600]
08 Feb 13:51 INFO valid result:
recall@10 : 0.201 recall@20 : 0.2873 ndcg@10 : 0.1126 ndcg@20 : 0.1344
08 Feb 13:51 INFO Saving current: saved/TedRec-Feb-08-2024_13-47-27.pth
08 Feb 13:52 INFO epoch 4 training [time: 57.94s, train loss: 1531.8245]
08 Feb 13:52 INFO epoch 4 evaluating [time: 1.00s, valid_score: 0.115700]
08 Feb 13:52 INFO valid result:
recall@10 : 0.2047 recall@20 : 0.2924 ndcg@10 : 0.1157 ndcg@20 : 0.1377
08 Feb 13:52 INFO Saving current: saved/TedRec-Feb-08-2024_13-47-27.pth
08 Feb 13:53 INFO epoch 5 training [time: 58.16s, train loss: 1518.1351]
08 Feb 13:53 INFO epoch 5 evaluating [time: 1.02s, valid_score: 0.119000]
08 Feb 13:53 INFO valid result:
recall@10 : 0.2103 recall@20 : 0.2972 ndcg@10 : 0.119 ndcg@20 : 0.1409
08 Feb 13:53 INFO Saving current: saved/TedRec-Feb-08-2024_13-47-27.pth
08 Feb 13:54 INFO epoch 6 training [time: 58.30s, train loss: 1507.7424]
08 Feb 13:54 INFO epoch 6 evaluating [time: 1.00s, valid_score: 0.120200]
08 Feb 13:54 INFO valid result:
recall@10 : 0.2113 recall@20 : 0.3017 ndcg@10 : 0.1202 ndcg@20 : 0.143
08 Feb 13:54 INFO Saving current: saved/TedRec-Feb-08-2024_13-47-27.pth
08 Feb 13:55 INFO epoch 7 training [time: 58.81s, train loss: 1499.0317]
08 Feb 13:55 INFO epoch 7 evaluating [time: 0.99s, valid_score: 0.120900]
08 Feb 13:55 INFO valid result:
recall@10 : 0.213 recall@20 : 0.3036 ndcg@10 : 0.1209 ndcg@20 : 0.1437
08 Feb 13:55 INFO Saving current: saved/TedRec-Feb-08-2024_13-47-27.pth
08 Feb 13:56 INFO epoch 8 training [time: 57.99s, train loss: 1491.4447]
08 Feb 13:56 INFO epoch 8 evaluating [time: 1.03s, valid_score: 0.124100]
08 Feb 13:56 INFO valid result:
recall@10 : 0.216 recall@20 : 0.3044 ndcg@10 : 0.1241 ndcg@20 : 0.1464
08 Feb 13:56 INFO Saving current: saved/TedRec-Feb-08-2024_13-47-27.pth
08 Feb 13:57 INFO epoch 9 training [time: 57.73s, train loss: 1484.5530]
08 Feb 13:57 INFO epoch 9 evaluating [time: 1.01s, valid_score: 0.124800]
08 Feb 13:57 INFO valid result:
recall@10 : 0.2162 recall@20 : 0.3058 ndcg@10 : 0.1248 ndcg@20 : 0.1474
08 Feb 13:57 INFO Saving current: saved/TedRec-Feb-08-2024_13-47-27.pth
08 Feb 13:58 INFO epoch 10 training [time: 58.05s, train loss: 1478.9903]
08 Feb 13:58 INFO epoch 10 evaluating [time: 1.01s, valid_score: 0.125000]
08 Feb 13:58 INFO valid result:
recall@10 : 0.2178 recall@20 : 0.304 ndcg@10 : 0.125 ndcg@20 : 0.1467
08 Feb 13:58 INFO Saving current: saved/TedRec-Feb-08-2024_13-47-27.pth
08 Feb 13:59 INFO epoch 11 training [time: 57.99s, train loss: 1473.7167]
08 Feb 13:59 INFO epoch 11 evaluating [time: 1.04s, valid_score: 0.124600]
08 Feb 13:59 INFO valid result:
recall@10 : 0.2171 recall@20 : 0.3047 ndcg@10 : 0.1246 ndcg@20 : 0.1467
08 Feb 14:00 INFO epoch 12 training [time: 58.19s, train loss: 1469.0408]
08 Feb 14:00 INFO epoch 12 evaluating [time: 1.12s, valid_score: 0.124200]
08 Feb 14:00 INFO valid result:
recall@10 : 0.2176 recall@20 : 0.3052 ndcg@10 : 0.1242 ndcg@20 : 0.1463
08 Feb 14:01 INFO epoch 13 training [time: 58.67s, train loss: 1464.3456]
08 Feb 14:01 INFO epoch 13 evaluating [time: 1.04s, valid_score: 0.125500]
08 Feb 14:01 INFO valid result:
recall@10 : 0.22 recall@20 : 0.3056 ndcg@10 : 0.1255 ndcg@20 : 0.147
08 Feb 14:01 INFO Saving current: saved/TedRec-Feb-08-2024_13-47-27.pth
08 Feb 14:02 INFO epoch 14 training [time: 58.14s, train loss: 1460.6988]
08 Feb 14:02 INFO epoch 14 evaluating [time: 0.99s, valid_score: 0.125900]
08 Feb 14:02 INFO valid result:
recall@10 : 0.2201 recall@20 : 0.3031 ndcg@10 : 0.1259 ndcg@20 : 0.1468
08 Feb 14:02 INFO Saving current: saved/TedRec-Feb-08-2024_13-47-27.pth
08 Feb 14:03 INFO epoch 15 training [time: 58.23s, train loss: 1457.3299]
08 Feb 14:03 INFO epoch 15 evaluating [time: 1.11s, valid_score: 0.124700]
08 Feb 14:03 INFO valid result:
recall@10 : 0.215 recall@20 : 0.3053 ndcg@10 : 0.1247 ndcg@20 : 0.1475
08 Feb 14:04 INFO epoch 16 training [time: 57.63s, train loss: 1454.0253]
08 Feb 14:04 INFO epoch 16 evaluating [time: 1.04s, valid_score: 0.126100]
08 Feb 14:04 INFO valid result:
recall@10 : 0.2192 recall@20 : 0.3067 ndcg@10 : 0.1261 ndcg@20 : 0.1481
08 Feb 14:04 INFO Saving current: saved/TedRec-Feb-08-2024_13-47-27.pth
08 Feb 14:05 INFO epoch 17 training [time: 58.46s, train loss: 1451.3315]
08 Feb 14:05 INFO epoch 17 evaluating [time: 0.99s, valid_score: 0.124900]
08 Feb 14:05 INFO valid result:
recall@10 : 0.2169 recall@20 : 0.3031 ndcg@10 : 0.1249 ndcg@20 : 0.1467
08 Feb 14:06 INFO epoch 18 training [time: 59.01s, train loss: 1448.2748]
08 Feb 14:06 INFO epoch 18 evaluating [time: 0.98s, valid_score: 0.125600]
08 Feb 14:06 INFO valid result:
recall@10 : 0.218 recall@20 : 0.3048 ndcg@10 : 0.1256 ndcg@20 : 0.1475
08 Feb 14:07 INFO epoch 19 training [time: 57.89s, train loss: 1446.0606]
08 Feb 14:07 INFO epoch 19 evaluating [time: 0.99s, valid_score: 0.125800]
08 Feb 14:07 INFO valid result:
recall@10 : 0.2189 recall@20 : 0.3058 ndcg@10 : 0.1258 ndcg@20 : 0.1477
08 Feb 14:08 INFO epoch 20 training [time: 58.07s, train loss: 1443.7078]
08 Feb 14:08 INFO epoch 20 evaluating [time: 1.02s, valid_score: 0.125100]
08 Feb 14:08 INFO valid result:
recall@10 : 0.219 recall@20 : 0.3046 ndcg@10 : 0.1251 ndcg@20 : 0.1466
08 Feb 14:09 INFO epoch 21 training [time: 58.05s, train loss: 1441.9205]
08 Feb 14:09 INFO epoch 21 evaluating [time: 1.27s, valid_score: 0.126200]
08 Feb 14:09 INFO valid result:
recall@10 : 0.2183 recall@20 : 0.3044 ndcg@10 : 0.1262 ndcg@20 : 0.1478
08 Feb 14:09 INFO Saving current: saved/TedRec-Feb-08-2024_13-47-27.pth
08 Feb 14:10 INFO epoch 22 training [time: 57.74s, train loss: 1439.7032]
08 Feb 14:10 INFO epoch 22 evaluating [time: 1.05s, valid_score: 0.125100]
08 Feb 14:10 INFO valid result:
recall@10 : 0.2178 recall@20 : 0.3044 ndcg@10 : 0.1251 ndcg@20 : 0.1469
08 Feb 14:11 INFO epoch 23 training [time: 58.33s, train loss: 1437.8742]
08 Feb 14:11 INFO epoch 23 evaluating [time: 1.07s, valid_score: 0.124500]
08 Feb 14:11 INFO valid result:
recall@10 : 0.2174 recall@20 : 0.3055 ndcg@10 : 0.1245 ndcg@20 : 0.1468
08 Feb 14:12 INFO epoch 24 training [time: 58.82s, train loss: 1435.9089]
08 Feb 14:12 INFO epoch 24 evaluating [time: 1.04s, valid_score: 0.126500]
08 Feb 14:12 INFO valid result:
recall@10 : 0.2183 recall@20 : 0.303 ndcg@10 : 0.1265 ndcg@20 : 0.1478
08 Feb 14:12 INFO Saving current: saved/TedRec-Feb-08-2024_13-47-27.pth
08 Feb 14:13 INFO epoch 25 training [time: 57.51s, train loss: 1434.3343]
08 Feb 14:13 INFO epoch 25 evaluating [time: 1.03s, valid_score: 0.124900]
08 Feb 14:13 INFO valid result:
recall@10 : 0.2168 recall@20 : 0.3056 ndcg@10 : 0.1249 ndcg@20 : 0.1473
08 Feb 14:14 INFO epoch 26 training [time: 57.72s, train loss: 1432.8411]
08 Feb 14:14 INFO epoch 26 evaluating [time: 0.98s, valid_score: 0.125100]
08 Feb 14:14 INFO valid result:
recall@10 : 0.2156 recall@20 : 0.302 ndcg@10 : 0.1251 ndcg@20 : 0.1469
08 Feb 14:15 INFO epoch 27 training [time: 57.65s, train loss: 1431.6177]
08 Feb 14:15 INFO epoch 27 evaluating [time: 0.97s, valid_score: 0.123600]
08 Feb 14:15 INFO valid result:
recall@10 : 0.2141 recall@20 : 0.3039 ndcg@10 : 0.1236 ndcg@20 : 0.1462
08 Feb 14:16 INFO epoch 28 training [time: 57.35s, train loss: 1430.2915]
08 Feb 14:16 INFO epoch 28 evaluating [time: 0.96s, valid_score: 0.125500]
08 Feb 14:16 INFO valid result:
recall@10 : 0.2163 recall@20 : 0.3041 ndcg@10 : 0.1255 ndcg@20 : 0.1476
08 Feb 14:17 INFO epoch 29 training [time: 57.45s, train loss: 1428.9156]
08 Feb 14:17 INFO epoch 29 evaluating [time: 0.97s, valid_score: 0.125800]
08 Feb 14:17 INFO valid result:
recall@10 : 0.218 recall@20 : 0.3013 ndcg@10 : 0.1258 ndcg@20 : 0.1468
08 Feb 14:18 INFO epoch 30 training [time: 57.79s, train loss: 1427.5792]
08 Feb 14:18 INFO epoch 30 evaluating [time: 1.01s, valid_score: 0.124200]
08 Feb 14:18 INFO valid result:
recall@10 : 0.2142 recall@20 : 0.3008 ndcg@10 : 0.1242 ndcg@20 : 0.1459
08 Feb 14:19 INFO epoch 31 training [time: 57.62s, train loss: 1426.5236]
08 Feb 14:19 INFO epoch 31 evaluating [time: 0.97s, valid_score: 0.125200]
08 Feb 14:19 INFO valid result:
recall@10 : 0.2179 recall@20 : 0.3012 ndcg@10 : 0.1252 ndcg@20 : 0.1461
08 Feb 14:20 INFO epoch 32 training [time: 57.19s, train loss: 1425.4823]
08 Feb 14:20 INFO epoch 32 evaluating [time: 0.96s, valid_score: 0.124200]
08 Feb 14:20 INFO valid result:
recall@10 : 0.2149 recall@20 : 0.3023 ndcg@10 : 0.1242 ndcg@20 : 0.1461
08 Feb 14:21 INFO epoch 33 training [time: 57.49s, train loss: 1424.0919]
08 Feb 14:21 INFO epoch 33 evaluating [time: 0.98s, valid_score: 0.124700]
08 Feb 14:21 INFO valid result:
recall@10 : 0.2165 recall@20 : 0.3001 ndcg@10 : 0.1247 ndcg@20 : 0.1458
08 Feb 14:22 INFO epoch 34 training [time: 57.25s, train loss: 1423.0433]
08 Feb 14:22 INFO epoch 34 evaluating [time: 1.29s, valid_score: 0.124700]
08 Feb 14:22 INFO valid result:
recall@10 : 0.2177 recall@20 : 0.3019 ndcg@10 : 0.1247 ndcg@20 : 0.1459
08 Feb 14:23 INFO epoch 35 training [time: 57.26s, train loss: 1422.0620]
08 Feb 14:23 INFO epoch 35 evaluating [time: 1.09s, valid_score: 0.124600]
08 Feb 14:23 INFO valid result:
recall@10 : 0.2146 recall@20 : 0.3002 ndcg@10 : 0.1246 ndcg@20 : 0.1461
08 Feb 14:23 INFO Finished training, best eval result in epoch 24
08 Feb 14:23 INFO Loading model structure and parameters from saved/TedRec-Feb-08-2024_13-47-27.pth
08 Feb 14:23 INFO best valid : OrderedDict([('recall@10', 0.2183), ('recall@20', 0.303), ('ndcg@10', 0.1265), ('ndcg@20', 0.1478)])
08 Feb 14:23 INFO test result: OrderedDict([('recall@10', 0.2234), ('recall@20', 0.3073), ('ndcg@10', 0.1316), ('ndcg@20', 0.1527)])
08 Feb 14:23 INFO 0.2234 0.3073 0.1316 0.1527
Namespace(d='OR')
['props/TedRec.yaml', 'props/overall.yaml']