Skip to content

Latest commit

 

History

History
29 lines (20 loc) · 938 Bytes

README.md

File metadata and controls

29 lines (20 loc) · 938 Bytes

In-Context-Learning-Evaluation

examples

ICLEval data

We put the data of this benchmark at ../data/tasks_data

You can also generate these data by yourself using the code from ../code/generate_data and the raw data from ../data/origin_data.

Evaluation

You can evaluate the models' in-context abilities using the code from ../code/model_evaluation.

  1. replace the your_path in line 40 of ../code/model_evaluation/run_icl_eval.py with your own models' path.
  2. execute python run_icl_eval.py.

results

Citation Information

If you find this dataset useful, please consider citing our paper:

@misc{,
  title={ICLEval: Evaluating In-Context Learning Ability of Large Language Models},
  author={Wentong Chen, Yankai Lin,  ZhenHao Zhou, HongYun Huang, Yantao Jia, Zhao Cao, Ji-Rong Wen},
  year={2024},
  journal={arXiv preprint arXiv:2406.14955},
}