-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathconvert.py
277 lines (201 loc) · 10.1 KB
/
convert.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
import opslist
def RnnRWKV(ops:opslist.RWKVOnnxOps, *args):
class myRWKV(ops.module):
@ ops.initfunc
def __init__(self, w):
super(myRWKV, self).__init__()
print("Legacy RWKV")
self.ops = ops
self.headsnume, self.headsize = w[f"blocks.0.att.time_decay"].shape
self.postprocess0 = ops.initTensor((w["ln_out.weight"]))
self.postprocess1 = ops.initTensor((w["ln_out.bias"]))
self.postprocess2 = ops.initTensor((w["head.weight"]))
self.emb = ops.initTensor(w["emb.weight"])
self.emb1 = ops.initTensor(w["blocks.0.ln0.weight"])
self.emb2 = ops.initTensor(w["blocks.0.ln0.bias"])
self.ln1w = (ops.stack(
[w[f"blocks.{x}.ln1.weight"] for x in range(ops.n_layers)]))
self.ln1b = (ops.stack(
[w[f"blocks.{x}.ln1.bias"] for x in range(ops.n_layers)]))
self.ln2w = (ops.stack(
[w[f"blocks.{x}.ln2.weight"] for x in range(ops.n_layers)]))
self.ln2b = (ops.stack(
[w[f"blocks.{x}.ln2.bias"] for x in range(ops.n_layers)]))
self.lnxw = (ops.stack(
[w[f"blocks.{x}.att.ln_x.weight"].reshape(self.headsnume,-1) for x in range(ops.n_layers)]))
self.lnxb = (ops.stack(
[w[f"blocks.{x}.att.ln_x.bias"].reshape(self.headsnume,-1) for x in range(ops.n_layers)]))
self.time_decay = (ops.stack([
w[f"blocks.{x}.att.time_decay"].double().exp().neg().exp().reshape(self.headsnume,-1,1).repeat(1,1,self.headsize) for x in range(ops.n_layers)], True))
self.time_first = (ops.stack([
w[f"blocks.{x}.att.time_faaaa"].reshape(self.headsnume,-1,1).repeat(1,1,self.headsize) for x in range(ops.n_layers)],True))
self.kktk = (ops.stack(
[w[f"blocks.{x}.att.time_mix_k"] for x in range(ops.n_layers)]))
self.vvtv = (ops.stack(
[w[f"blocks.{x}.att.time_mix_v"] for x in range(ops.n_layers)]))
self.rrtr = (ops.stack(
[w[f"blocks.{x}.att.time_mix_r"] for x in range(ops.n_layers)]))
self.ggtg = (ops.stack(
[w[f"blocks.{x}.att.time_mix_g"] for x in range(ops.n_layers)]))
self.key = (ops.stack(
[w[f"blocks.{x}.att.key.weight"].t() for x in range(ops.n_layers)], exname="_key"))
self.value = (ops.stack(
[w[f"blocks.{x}.att.value.weight"].t() for x in range(ops.n_layers)], exname="_value"))
self.receptance = (ops.stack([
w[f"blocks.{x}.att.receptance.weight"].t() for x in range(ops.n_layers)], exname="_receptance"))
self.gate = (ops.stack([
w[f"blocks.{x}.att.gate.weight"].t() for x in range(ops.n_layers)], exname="_gate"))
self.outputvv = (ops.stack([
w[f"blocks.{x}.att.output.weight"].t() for x in range(ops.n_layers)], exname="_outputvv"))
self.time_mix_k_ffn = (ops.stack([
w[f"blocks.{x}.ffn.time_mix_k"] for x in range(ops.n_layers)]))
self.time_mix_r_ffn = (ops.stack([
w[f"blocks.{x}.ffn.time_mix_r"] for x in range(ops.n_layers)]))
self.key_ffn = (ops.stack(
[w[f"blocks.{x}.ffn.key.weight"].t() for x in range(ops.n_layers)], exname="_key_ffn"))
self.receptance_ffn = (ops.stack([
w[f"blocks.{x}.ffn.receptance.weight"].t() for x in range(ops.n_layers)], exname="_receptance_ffn"))
self.value_ffn = (ops.stack([
w[f"blocks.{x}.ffn.value.weight"].t() for x in range(ops.n_layers)], exname="_value_ffn"))
del w
# def torchwise(self, B, T, C, H, s, r, k, v, w, u):
# at = k@v
# att = at*u
# for t in range(T):
# premat = (att[:,t] + s)
# # print(premat.shape, rt.shape)
# rt = r[:,:,t:t+1,:].float()
# out[:,t] = ((rt @ premat)).reshape(out[:,t].shape)
# s = at[:,t] + w * s
# out = out.reshape(B, T, C)
# return out, ss
def wkv5(self, k,v, r, xx, state):
td = self.time_decay[xx]
tf = self.time_first[xx]
kreshaped = ops.reshape(k, self.ops.kshape)
vreshaped = ops.reshape(v, self.ops.vshape)
rreshaped = ops.reshape(r, self.ops.rshape)
kv = ops.matvec(kreshaped, vreshaped)
kkv = ops.multiply(kv, tf)
premat = ops.add(kkv, state)
wkv = ops.matvec(rreshaped, premat)
state = ops.multiply(state, td)
state = ops.add(state, kv)
return wkv, state
@ops.layerdef
def doLayer(self, x, statea, stateb, statec, xx):
xy = ops.layernorm(x, self.ln1w[xx], self.ln1b[xx])
k = ops.matvec(
ops.lerp(statea, xy, self.kktk[xx]),self.key[xx], True)
v = ops.matvec(ops.lerp(
statea, xy, self.vvtv[xx]),self.value[xx], True)
rr = ops.matvec(ops.lerp(statea, xy, self.rrtr[xx]),
self.receptance[xx], True)
g = ops.matvec(
ops.lerp(statea, xy, self.ggtg[xx]),self.gate[xx])
gg = ops.silu(g)
wkv, state = self.wkv5(k,v, rr, xx,statec)
wkv = self.ops.convertToFloat16(wkv)
wkv8 = ops.divide(wkv, ops.eight)
# x = self.ln_x(x / self.head_size_divisor).view(B, T, C)
# x = self.output(x * g)
lnx = ops.groupnorm(wkv8, self.lnxw[xx], self.lnxb[xx])
lnxo = ops.reshape(lnx, self.ops.normshape)
mvvo = ops.matvec(ops.multiply(gg, lnxo),
self.outputvv[xx])
mvv = ops.add(mvvo, x)
ddd = ops.layernorm(mvv, self.ln2w[xx], self.ln2b[xx])
kml = ops.lerp(
stateb, ddd, self.time_mix_k_ffn[xx])
km = ops.relu(ops.matvec(kml, self.key_ffn[xx]))
krl = ops.lerp(
stateb, ddd, self.time_mix_r_ffn[xx])
rt = ops.logistical((ops.matvec(krl,self.receptance_ffn[xx])))
x = ops.add(mvv, ops.multiply(
ops.matvec(ops.multiply(km, km),self.value_ffn[xx] ), rt))
return x, xy, ddd, state
@ ops.mainfunc
def forward(self, x, state = None, statec = None):
if (state is None):
state = ops.emptyState
statec = ops.emptyWkvState
x = ops.layernorm(
ops.getIndex(self.emb, x),
self.emb1, self.emb2)
statea = state[0::2]
stateb = state[1::2]
statec = statec
# statee = state[4::5] if ops.useSafeWKV else [None]*ops.n_layers
ot = []
ot2 = []
for i in range(ops.n_layers):
x, aaa, bbb, ccc = self.doLayer(
x, ops.convertToFloat16(statea[i]), ops.convertToFloat16(stateb[i]),ops.convertToFloat32(statec[i]), i)
ot = ot + ([ops.convertToFloat32(aaa),ops.convertToFloat32(bbb)])
ot2 = ot2 + [ops.convertToFloat32(ccc)]
x = ops.matvec(self.postprocess2,ops.layernorm(x, self.postprocess0,
self.postprocess1))
return ops.convertToFloat32(x), ot, ot2
ops.postProcessModule(myRWKV(*args))
import torch
def convert_model(path, dtype):
#delete all .onnx and .bin files
import os
for file in os.listdir("."):
if file.endswith(".onnx") or file.endswith(".bin"):
os.remove(file)
w = torch.load(path, map_location="cpu")
dims = len(w["blocks.0.att.key.weight"])
headsnume, headsize = w[f"blocks.0.att.time_decay"].shape
layers = len(
list(filter(lambda x: "blocks" in x and "ln1.bias" in x, w.keys())))
ops = opslist.RWKVOnnxOps(layers,dims,dtype=dtype, opsVersion=version.get(), externalData=use_external_data.get(), splitExternalData=splitExternalData.get(), fp32inout=fp32inout.get(), quantized=mybits.get()==8, heads=headsnume)
RnnRWKV(ops,w)
import tkinter as tk
from tkinter import filedialog
# Create the main window
root = tk.Tk()
root.title("File Converter")
# Define the functions
def choose_input_file():
input_file = filedialog.askopenfilename()
input_path.set(input_file)
import numpy as np
def convert():
path = input_path.get()
dtype = np.float16 if mybits.get()==16 else np.float32
convert_model(path, dtype)
# Define the variables
input_path = tk.StringVar()
mybits = tk.IntVar(value=8)
use_external_data = tk.BooleanVar(value=True)
splitExternalData = tk.BooleanVar(value=False)
fp32inout = tk.BooleanVar(value=False)
# version, number either 15/17
version = tk.IntVar(value=15)
# Create the widgets
input_label = tk.Label(root, text="Input Path:")
opsetlabel = tk.Label(root, text="opset:")
bitlabel = tk.Label(root, text="bit")
input_entry = tk.Entry(root, textvariable=input_path)
input_button = tk.Button(root, text="Browse...", command=choose_input_file)
bits = tk.OptionMenu(root, mybits, 8, 16, 32)
check_button3 = tk.Checkbutton(root, text="External Data", variable=use_external_data)
check_button4 = tk.Checkbutton(root, text="Split External Data", variable=splitExternalData)
check_button5 = tk.Checkbutton(root, text="Float32 inputs/outputs", variable=fp32inout)
input_select = tk.OptionMenu(root, version, 15, 17, 18)
convert_button = tk.Button(root, text="Convert", command=convert)
# Add the widgets to the window
input_label.grid(row=0, column=0)
input_entry.grid(row=0, column=1)
input_button.grid(row=0, column=2)
bits.grid(row=2, column=0)
bitlabel.grid(row=2, column=1)
check_button3.grid(row=2, column=2)
check_button4.grid(row=2, column=3)
check_button5.grid(row=2, column=4)
opsetlabel.grid(row=3, column=0)
input_select.grid(row=3, column=1)
convert_button.grid(row=3, column=2)
# Start the main event loop
root.mainloop()