-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathapp.py
36 lines (28 loc) · 933 Bytes
/
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
from flask import Flask, jsonify,request, url_for, redirect, render_template
import pickle
import numpy as np
import requests
import pandas as pd
app = Flask(__name__)
model=pickle.load(open('models/LogisticRegression.pkl','rb'))
@app.route('/')
def hello_world():
return render_template("form.html")
@app.route('/submit', methods=['GET','POST'])
def submit():
# MinTemp
input_lst=[float(x) for x in request.form.values()]
input_lst=np.array(input_lst)
input_lst=input_lst.reshape(1,-1)
pred = model.predict(input_lst)
output=int(pred[0])
print(output)
return render_template("prediction.html",result=output)
@app.route('/predict_api',methods=['POST'])
def predict_api():
data=request.get_json(force=True)
prediction=model.predict([np.array(list(data.values()))])
output=prediction[0]
return jsonify(output)
if __name__ == '__main__':
app.run(host='0.0.0.0', port=3000)