forked from xcmyz/FastSpeech
-
Notifications
You must be signed in to change notification settings - Fork 0
/
model.py
72 lines (54 loc) · 2.91 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
import torch
import torch.nn as nn
import hparams as hp
import utils
from transformer.Models import Encoder, Decoder
from transformer.Layers import Linear, PostNet
from modules import LengthRegulator, CBHG
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
class FastSpeech(nn.Module):
""" FastSpeech """
def __init__(self):
super(FastSpeech, self).__init__()
self.encoder = Encoder()
self.length_regulator = LengthRegulator()
self.decoder = Decoder()
self.mel_linear = Linear(hp.decoder_dim, hp.num_mels)
self.postnet = CBHG(hp.num_mels, K=8,
projections=[256, hp.num_mels])
self.last_linear = Linear(hp.num_mels * 2, hp.num_mels)
def mask_tensor(self, mel_output, position, mel_max_length):
lengths = torch.max(position, -1)[0]
mask = ~utils.get_mask_from_lengths(lengths, max_len=mel_max_length)
mask = mask.unsqueeze(-1).expand(-1, -1, mel_output.size(-1))
return mel_output.masked_fill(mask, 0.)
def forward(self, src_seq, src_pos, mel_pos=None, mel_max_length=None, length_target=None, alpha=1.0):
encoder_output, _ = self.encoder(src_seq, src_pos)
if self.training:
length_regulator_output, duration_predictor_output = self.length_regulator(encoder_output,
target=length_target,
alpha=alpha,
mel_max_length=mel_max_length)
decoder_output = self.decoder(length_regulator_output, mel_pos)
mel_output = self.mel_linear(decoder_output)
mel_output = self.mask_tensor(mel_output, mel_pos, mel_max_length)
residual = self.postnet(mel_output)
residual = self.last_linear(residual)
mel_postnet_output = mel_output + residual
mel_postnet_output = self.mask_tensor(mel_postnet_output,
mel_pos,
mel_max_length)
return mel_output, mel_postnet_output, duration_predictor_output
else:
length_regulator_output, decoder_pos = self.length_regulator(encoder_output,
alpha=alpha)
decoder_output = self.decoder(length_regulator_output, decoder_pos)
mel_output = self.mel_linear(decoder_output)
residual = self.postnet(mel_output)
residual = self.last_linear(residual)
mel_postnet_output = mel_output + residual
return mel_output, mel_postnet_output
if __name__ == "__main__":
# Test
model = FastSpeech()
print(sum(param.numel() for param in model.parameters()))