-
Notifications
You must be signed in to change notification settings - Fork 91
/
Copy pathk_clique.cpp
548 lines (469 loc) · 18.1 KB
/
k_clique.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
/*
scp, The sequential clique percolation algorithm.
Copyright (C) 2011 Aalto University
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
*/
/*
A C++ implementation of the sequential clique percolation (SCP) algorithm. This version is seriously cripled and only unweighted clique percolation without
thresholding is allowed. However, all the code to include further functionality is already included in the source code.
If you use this code to produce results for a publication, please cite:
A sequential algorithm for fast clique percolation, J.M. Kumpula, M. Kivelä, K. Kaski,and J. Saramäki, Phys. Rev. E 79, 026109 (2008)
The article contains detailed introduction to the SCP.
Authors: Eetu Latja, Mikko Kivelä and Jussi Kumpula.
*/
#include "k_clique.h"
#include "dendrogram.h"
#define HELPSTR "Usage: ./k_clique [inputfile] [options]\n\
The input file must be in the edge list format, where at each \
line there three columns: node1Index, node2Index and edge weight separated \
by a white space. Node indices must be integers from 0 to n-1, where n is the \
number of nodes in the network. Edges are undirected and there can only be \
at most one edge between two nodes in the edge file.\n\
Options:\n\
\t-o=[outputfile] : Write output to a specified file.\n\
\t-k=[clique size] : The size of the clique.\n\
\t-v : Verbose mode.\n "
//\t-w : Use weighted clique percolation.\n\
//\t-f=[weightfunction] : Specifies a weight function when using weighted clique percolation.\n "
struct Link{
size_t source;
size_t dest;
float weight;
Link(size_t source=0,size_t dest=0, float weight=0.0) : source(source), dest(dest), weight(weight) {}
};
// finds out the optimal size for the hash
size_t determineHashSize(const size_t numElements, const size_t k)
{
size_t size_limit = 26;
size_t t;
if ( k < size_limit)
t = k;
else
t = size_limit;
while ( t < 10 ) t += k;
while ( 1 << t < numElements && t < size_limit )
{
t += k;
}
return t; // this many bits are needed
}
// determine the network size and number of links
// same link must not be twice in the network!
bool getNetSizeAndLinkNumbers(char * fileName, size_t & netSize, size_t & numLinks, std::list<Link> & linkList)
{
std::ifstream myfile(fileName);
std::string line;
size_t source, dest;
float weight;
netSize=0;
numLinks=0;
if (myfile.is_open())
{
while (!myfile.eof())
{
getline(myfile, line); // Read a line from input into a string.
if (!line.empty())
{
std::istringstream is(line); // Extract data using a stringstream.
if ((is >> source) && (is >> dest) && (is >> weight));
else {
std::cerr<<"Error reading line "<<numLinks << std::endl;
return false;}
linkList.push_back(Link(source,dest,weight));
if (source > netSize)
netSize = source; //the size of the net is determined by the largest node index
if (dest > netSize)
netSize = dest;
++numLinks;
}
}
myfile.close();
}
++netSize; // net size is one more than the largest index
//std::cout << "ok\n";
return true;
}
/*
reads one line from the input file. The line contains the source and target nodes and weight.
*/
bool readLine(std::ifstream & myfile, size_t & source, size_t & dest, float & weight)
{
bool readlineok = false;
if ( myfile.is_open())
{
std::string line;
getline(myfile, line); // Read a line from input into a string.
if (!line.empty())
{
std::istringstream is(line); // Extract data using a stringstream.
is >> source;
is >> dest;
is >> weight;
readlineok = true;
}
}
else
{
std::cerr << "Error opening the network file!\n";
}
return readlineok;
}
void kCliquesFind(std::vector<weighedClique> & cliqueVector, NetType & net, size_t source, size_t dest, const float weight, const size_t k, const size_t weightFunction)
{
// If k=2 cliques are links and the only new clique formed is the added link itself.
if (k==2){
std::vector<size_t> tempVector(2);
tempVector[0] = source; tempVector[1] = dest;
weighedClique tempClique(tempVector, net, weightFunction);
cliqueVector.push_back(tempClique);
net[source][dest] = weight; // add link
return;
}
// find out degrees of source and dest
size_t k_s, k_d;
k_s = net(source).size();
k_d = net(dest).size();
// If degree of 'source' is larger than degree of 'dest', swap these. This makes it faster because we only iterate through nodes which are neighbors of 'source'.
if (k_s > k_d)
{
size_t temp = source;
source = dest;
dest = temp;
}
if ( k_s > k - 3 && k_d > k - 3) // if this is not true, a new k-clique can not form
{
if (k == 3)
{
std::vector<size_t> tempVector(3);
tempVector[0] = source;
tempVector[1] = dest;
for ( NetType::const_edge_iterator i=net(source).begin(); !i.finished(); ++i)
{
if ( net(*i)[dest] > 0 )
{
tempVector[2] = *i;
weighedClique tempClique(tempVector, net, weightFunction);
cliqueVector.push_back(tempClique);
}
}
}
else if (k == 4)
{
std::vector<size_t> tempVector(4);
tempVector[0] = source;
tempVector[1] = dest;
for ( NetType::const_edge_iterator i=net(source).begin(); !i.finished(); ++i)
{
NetType::const_edge_iterator j=i;
for ( ++j; !j.finished(); ++j) // makes j to point to the next iterable after i
{
if ( net(*i)[dest] > 0 && net(*j)[dest] > 0 && net(*i)[*j] > 0)
{
tempVector[2] = *i;
tempVector[3] = *j;
weighedClique tempClique(tempVector, net, weightFunction);
cliqueVector.push_back(tempClique);
}
}
}
}
else // k>4
{
nodeSet commonNeighborhood;
for ( NetType::const_edge_iterator i=net(source).begin(); !i.finished(); ++i)
{
if ( net(*i)[dest] > 0 )
commonNeighborhood.put(*i);
}
NetType subNet(commonNeighborhood.size());
std::vector<size_t> sourceAndDest(2);
sourceAndDest[0] = source;
sourceAndDest[1] = dest;
std::vector<weighedClique> k2cliqueVector;
for (nodeSet::iterator i = commonNeighborhood.begin(); !i.finished(); ++i)
{
nodeSet::iterator j = i;
for ( ++j; !j.finished(); ++j) // makes j to point to the next iterable after i
{
if (net(*i)[*j] > 0)
{
kCliquesFind(k2cliqueVector, subNet, *i, *j, net(*i)[*j], k - 2, 0);
for (std::vector<weighedClique>::iterator vectorIter = k2cliqueVector.begin(); vectorIter != k2cliqueVector.end(); vectorIter++)
{
weighedClique current = *vectorIter;
current.addNodes(sourceAndDest, net);
cliqueVector.push_back(current);
}
}
}
}
}
}
//Finally add the new link to the network
net[source][dest] = weight;
}
void kCommunitiesFind(std::vector<weighedClique> & cliqueVector, KruskalTree & communities, cliqueHash & k1cliquesHash, NetType & net, const size_t k)
{
std::vector<size_t> tempVector;
weighedClique k1clique;
for (std::vector<weighedClique>::iterator i = cliqueVector.begin(); i != cliqueVector.end(); ++i)
{
size_t rootIndex;
for (size_t j = 0; j < k; j++)
{
tempVector.clear();
for (size_t l = 0; l < k; l++)
if (l != j)
tempVector.push_back(i->at(l));
k1clique.replaceNodes(tempVector, net);
// check if this (k-1)-clique is founded before
int index = k1cliquesHash.getValue(k1clique);
if (!j) // first (k-1)-clique from this k-clique
{
if (index >= 0) // found before
{
rootIndex = index;
}
else
{
rootIndex = communities.add();
k1cliquesHash.put(k1clique, rootIndex);
}
}
else
{
if (index >= 0) // found before
{
communities.connect(rootIndex, index);
}
else
{
size_t newIndex = communities.add();
k1cliquesHash.put(k1clique, newIndex);
communities.connect(newIndex, rootIndex);
}
}
}
}
}
void outputCommunityStructure(KruskalTree & communities, cliqueHash & k1cliquesHash, std::ofstream & file)
{
// Go through each community and put nodes from each community into a nodeSet
std::map<size_t, nodeSet> realCommunities;
for (std::pair<clique,size_t> currentPair = k1cliquesHash.begin(); !k1cliquesHash.finished(); currentPair = k1cliquesHash.next())
{
size_t community = communities.findRoot(currentPair.second);
for (size_t i = 0; i < currentPair.first.size(); i++)
{
realCommunities[community].put(currentPair.first.at(i));
}
}
if (file.is_open())
{
int communityIndex = 1;
for (std::map<size_t, nodeSet>::iterator i = realCommunities.begin(); i != realCommunities.end(); i++)
{
//file << communityIndex << ": "; // Uncomment if you want to enumerate the communities
for (nodeSet::iterator j = i->second.begin(); !j.finished(); ++j)
file << *j << " ";
file << "\n";
communityIndex++;
}
}
file << "\n";
}
void unweightedSCP(NetType & net, std::list<Link> & linkList, const size_t numberOfLinks, const size_t k, std::string outputFile,bool verbose)
{
size_t source, dest;
float weight;
std::vector<weighedClique> cliqueVector;
//Determine the number of k-1 cliques
size_t numberOfSmallCliques=0;
NetType *tempNetPointer= new NetType(net.size());
NetType &tempNet=*tempNetPointer;
for (std::list<Link>::iterator linkIterator=linkList.begin() ; linkIterator != linkList.end(); linkIterator++ )
{
source=(*linkIterator).source; dest=(*linkIterator).dest;weight=(*linkIterator).weight;
cliqueVector.clear();
kCliquesFind(cliqueVector, tempNet, source, dest, weight, k-1, 0);
numberOfSmallCliques+=cliqueVector.size();
}
delete tempNetPointer;
//Use the number of k-1 cliques to determine the hash size
size_t hash_bits = determineHashSize(numberOfSmallCliques, k - 1);
size_t numSlots=1; numSlots = numSlots << hash_bits; // Number of slots is 2**hash_bits
if (verbose){
std::cout<< "Number of "<< k-1 <<"-cliques: " <<numberOfSmallCliques<<std::endl;
std::cout<<"Number of bits in the hash table: "<<hash_bits<<std::endl;
std::cout<<"Number of slots in the hash table: "<<numSlots<<std::endl;
}
cliqueHash k1cliquesHash(numSlots, hash_bits, k - 1);
KruskalTree communities;
size_t nLinksLeft=linkList.size();
while (nLinksLeft>0)
{
nLinksLeft--;
Link link=linkList.front();linkList.pop_front();
source=link.source;dest=link.dest;weight=link.weight;
// phase I
cliqueVector.clear();
kCliquesFind(cliqueVector, net, source, dest, weight, k, 0);
// phase II
kCommunitiesFind(cliqueVector, communities, k1cliquesHash, net, k);
}
//communities are now detected, next we output the structure
std::ofstream ofile(outputFile.c_str());
outputCommunityStructure(communities, k1cliquesHash, ofile);
}
bool weighedCliqueCmp(const weighedClique lhs, const weighedClique rhs)
{
return lhs.getWeight() > rhs.getWeight();
}
void kCommunitiesFindWeighted(std::vector<weighedClique> & cliqueVector, KruskalTree & communities, cliqueHash & k1cliquesHash, NetType & net, const size_t k, const float threshold)
{
std::vector<size_t> tempVector;
weighedClique k1clique;
nodeCommunities nodeComs;
Dendrogram dendrogram;
size_t currentCliqueNumber = 0;
CommunityTracker comTracker(k1cliquesHash, communities, nodeComs, dendrogram, net);
for (std::vector<weighedClique>::iterator i = cliqueVector.begin(); i != cliqueVector.end(); ++i)
{
if (i->getWeight() < threshold)
break;
comTracker.addClique(*i);
currentCliqueNumber++;
//nodeComs.printCommunities(nodeCommunitOutputFile);
}
//dendrogram.printTree(dendrogramOutputFile);
}
void weightedSCP(NetType & net, std::ifstream & file, const size_t numberOfLinks, const size_t k, const float threshold, const size_t weightFunction, std::string outputFile)
{
size_t source, dest;
float weight;
// store all k-cliques here and sort after that
std::vector<weighedClique> cliqueVector;
// phase I
while (readLine(file, source, dest, weight))
kCliquesFind(cliqueVector, net, source, dest, weight, k, weightFunction);
std::sort(cliqueVector.begin(), cliqueVector.end(), weighedCliqueCmp);
//std::cout << cliqueVector.size() << " k-cliques" << std::endl;
// Use an upper bound for the number of k-1 cliques as hash size. Each k-clique has k k-1 cliques.
size_t hash_bits = determineHashSize(cliqueVector.size() * k, k - 1);
cliqueHash k1cliquesHash(1 << hash_bits, hash_bits, k - 1);
KruskalTree communities;
// phase II
kCommunitiesFindWeighted(cliqueVector, communities, k1cliquesHash, net, k, threshold);
//communities are now detected, next we output the structure
std::ofstream ofile(outputFile.c_str());
outputCommunityStructure(communities, k1cliquesHash, ofile);
//std::cout << "largest: " << communities.getLargestComponentSize() << std::endl;
}
bool validateLinkList(std::list<Link> &linkList,size_t netSize,bool verbose){
if (verbose) std::cout << "Checking that the node labels are not sparce and there are no multiedges... ";
NetType tempNet;
for (std::list<Link>::iterator linkIterator=linkList.begin() ; linkIterator != linkList.end(); linkIterator++ ){
if (tempNet[linkIterator->source][linkIterator->dest]!=0){
std::cerr <<"Error: The input file contains multi-edges."<<std::endl;
return false;
}
tempNet[linkIterator->source][linkIterator->dest]=linkIterator->weight;
}
if (tempNet.size()!=netSize){
std::cerr <<"Error: Node labels are sparse. Please name nodes from 0 to n-1."<<std::endl;
return false;
}
if (verbose) std::cout << "Ok."<< std::endl;
return true;
}
int percolation(char * fileName, const size_t k, const size_t weighted, const float threshold, const size_t weightFunction, std::string outputFile,bool verbose,bool sanityCheck)
{
size_t numberOfLinks;
size_t netSize;
std::list<Link> linkList;
// First read in the network from the file
if (verbose) std::cout << "Reading in the network...\n";
if (!getNetSizeAndLinkNumbers(fileName, netSize, numberOfLinks,linkList)) return EXIT_FAILURE;
if (verbose) std::cout<< "Number of nodes: " << netSize << "\nNumber of links: " <<numberOfLinks << "\n";
//Check that the edge list is valid, this will waste some time
if (sanityCheck) if (!validateLinkList(linkList,netSize,verbose)) return EXIT_FAILURE;
// Finally, proceed with the clique percolation
std::ifstream file(fileName);
if (file.is_open())
{
NetType net(netSize);
if (!weighted)
unweightedSCP(net, linkList, numberOfLinks, k, outputFile,verbose);
if (weighted)
weightedSCP(net, file, numberOfLinks, k, threshold, weightFunction, outputFile);
}
file.close();
return EXIT_SUCCESS;
}
int main(int argc, char* argv[])
{
size_t netSize, numberOfLinks;
size_t k = 3;
size_t weighted = 0;
float threshold = 0;
size_t weightFunction = 0;
bool verbose=false;
std::string outputFile;
//-- Parse arguments
for (size_t i = 2; i < argc; i++)
{
if (!strncmp(argv[i], "-k=", 3))
k = atoi(argv[i] + 3);
else if (!strncmp(argv[i], "-o=", 3))
outputFile = argv[i] + 3;
else if (!strcmp(argv[i], "-v"))
verbose=true;
/*
else if (!strcmp(argv[i], "-w"))
weighted = 1;
else if (!strncmp(argv[i], "-t=", 3))
threshold = atof(argv[i] + 3);
else if (!strcmp(argv[i], "-f"))
weightFunction = atof(argv[++i]);
*/ else{
std::cerr << "Invalid argument: "<<argv[i] <<std::endl;
std::cerr << HELPSTR<<std::endl;
return EXIT_FAILURE;
}
}
//--- Sanity checks for the input arguments
//Check that the input file was given
if (argc==1){
std::cerr << "Invalid number of arguments."<<std::endl;
std::cerr << HELPSTR<<std::endl;
return EXIT_FAILURE;
}
//Check that the clique size is valid
if (k < 3)
{
std::cerr << "Invalid value of clique size k: " << k << std::endl << "The value of k must be 3 or larger." << std::endl;
return EXIT_FAILURE;
}
//Check the the output file is given. If not, use "[inputfile]_output"
if (outputFile.empty())
{
outputFile = argv[1];
outputFile.append("_output");
}
//--- Run clique percolation
int exitCode=percolation(argv[1], k, weighted, threshold, weightFunction, outputFile,verbose,true);
// calculate timings
if (verbose)
std::cout << "Time used: " << (double)clock() / (double)CLOCKS_PER_SEC << "s" << std::endl;
return exitCode;
}