-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmlp.py
470 lines (382 loc) · 15.7 KB
/
mlp.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
import torch
from torch import nn
import pytorch_lightning as pl
import numpy as np
def posenc(x, L_embed=4):
rets = [x]
for i in range(0, L_embed):
for fn in [torch.sin, torch.cos]:
rets.append(fn(2.*3.14159265*(i+1) * x))
return torch.cat(rets, dim=-1)
def calcB(m=1024, d=2, sigma=1.0):
B = torch.randn(m, d)*sigma
return B.cuda()
def fourierfeat_enc(x, B):
feat = torch.cat([#torch.sum(x**2, -1, keepdims=True), ## new
x, ## new
torch.cos(2*3.14159265*(x @ B.T)),
torch.sin(2*3.14159265*(x @ B.T))], -1)
return feat
class PE_Module(torch.nn.Module):
def __init__(self, type, embed_L):
super(PE_Module, self).__init__()
self.embed_L= embed_L
self.type=type
def forward(self, x):
if self.type == 'posenc':
return posenc(x, L_embed=self.embed_L)
elif self.type== 'fourier':
return fourierfeat_enc(x, B=self.embed_L)
class PosEncodedMLP(torch.nn.Module):
def __init__(self,
input_size=2, output_size=2,
hidden_dims=[256, 256], L_embed=5,
embed_type='nerf', activation=nn.ReLU, sigma=0.1,
):
super(PosEncodedMLP, self).__init__()
self.embed_type = embed_type
self.L_embed = L_embed
if self.L_embed > 0 and self.embed_type == 'nerf':
self.input_size = L_embed*2*input_size+input_size
elif self.L_embed > 0 and self.embed_type == 'fourier':
self.B = calcB(m=L_embed, d=2, sigma=sigma)
self.input_size = L_embed*2+3
else:
self.input_size = input_size
#import ipdb; ipdb.set_trace()
modules = []
dim_prev = self.input_size
for h_dim in hidden_dims:
modules.append(
nn.Sequential(
nn.Linear(dim_prev, h_dim),
activation()))
dim_prev = h_dim
modules.append(nn.Sequential(nn.Linear(hidden_dims[-1], output_size),
))#nn.Sigmoid()))
self.mlp = nn.Sequential(*modules)
def _step(self, x):
if self.L_embed > 0 and self.embed_type == 'nerf':
x = posenc(x, self.L_embed)
elif self.L_embed > 0 and self.embed_type == 'fourier':
x = fourierfeat_enc(x, self.B)
x = self.mlp(x)
return x
def forward(self, x):
x = self._step(x)
return x
class PosEncodedMLP_FiLM(pl.LightningModule):
def __init__(self, context_dim=64, input_size=2, output_size=2,
hidden_dims=[256, 256], L_embed=10, embed_type='nerf',
activation=nn.ReLU, sigma=5.0,
context_type='VAE'):
'''
context_type = 'VAE'(default) | 'Transformer'
'''
super().__init__()
self.context_type = context_type
if context_dim > 0:
layer = FiLMLinear
else:
layer = nn.Linear # will break if context_dim is an input
self.context_dim = context_dim
self.embed_type = embed_type
self.L_embed = L_embed
if self.L_embed > 0 and self.embed_type == 'nerf':
self.input_size = L_embed*2*input_size+input_size
elif self.L_embed > 0 and self.embed_type == 'fourier':
self.B = nn.Parameter(calcB(m=L_embed, d=2, sigma=sigma), requires_grad=False)
# self.input_size = L_embed*2+3
self.input_size = L_embed*2+2 # change from +3 to +2 due to change in the fourierfeat_enc() function
else:
self.input_size = input_size
#positional embedding function#
if self.L_embed > 0 and self.embed_type == 'nerf':
# self.embed_fun = lambda x_in: posenc(x_in, self.L_embed)
self.embed_func= PE_Module(type='posenc', embed_L=self.L_embed)
elif self.L_embed > 0 and self.embed_type == 'fourier':
# self.embed_fun = lambda x_in: fourierfeat_enc(x_in, self.B)
self.embed_fun = PE_Module(type='fourier', embed_L= self.B)
self.layers = []
self.activations = []
dim_prev = self.input_size
for h_dim in hidden_dims:
self.layers.append(layer(dim_prev, h_dim, context_dim=self.context_dim))
self.activations.append(activation())
dim_prev = h_dim
# self.layer1 = layer(self.input_size, hidden_dims[0], context_dim=self.context_dim)
# self.act1 = activation()
# self.layer2 = layer(hidden_dims[0], hidden_dims[1], context_dim=self.context_dim)
# self.act2 = activation()
self.layers= nn.ModuleList(self.layers)
self.activations= nn.ModuleList(self.activations)
self.final_layer = layer(hidden_dims[-1], output_size, context_dim=self.context_dim)
##self.final_activation = nn.Sigmoid() ## TODO removed this for unconstrained output
def set_B(self, B):
self.B = B
def forward(self, x_in, context):
'''
context -
B x 1 x ndim for VAE,
B x L x ndim for Transfomer (assuming L layers in MLP)
'''
# if self.L_embed > 0 and self.embed_type == 'nerf':
# x_embed = posenc(x_in, self.L_embed)
# elif self.L_embed > 0 and self.embed_type == 'fourier':
# x_embed = fourierfeat_enc(x_in, self.B)
x_embed = self.embed_fun(x_in) # B x N x 2 -> B x N x dim_PE_dim
#for l, a in zip(self.layers, self.activations):
# print(x.shape, x.device, context.shape, context.device); input()
# x = l(x, context)
# x = a(x)
# if self.context_type=='VAE':
# con1 = context
# con2 = context
# con3 = context
# elif self.context_type=='Transformer':
# con1 = context[:, 0, :].unsqueeze(1)
# con2 = context[:, 1, :].unsqueeze(1)
# con3 = context[:, 2, :].unsqueeze(1)
# x = self.layer1(x_embed, con1)
# x = self.act1(x)
# x = self.layer2(x, con2)
# x = self.act2(x)
# x = self.final_layer(x, con3)
#x = self.final_activation(x)
x_tmp = x_embed
for ilayer, layer in enumerate(self.layers):
x = layer( x_tmp, context if self.context_type=='VAE' else context[:,ilayer,:].unsqueeze(1) )
x = self.activations[ilayer](x)
x_tmp = x
x= self.final_layer(x_tmp, context if self.context_type=='VAE' else context[:,-1,:].unsqueeze(1) )
return x
class FiLMLinear(pl.LightningModule):
def __init__(self, in_dim, out_dim, context_dim=64, residual=False):
super().__init__()
self.linear = nn.Linear(in_dim, out_dim)
self.activation1 = nn.LeakyReLU()
self.activation2 = nn.LeakyReLU()
self.film1 = nn.Linear(context_dim, out_dim)
self.film2 = nn.Linear(context_dim, out_dim)
self.residual = residual
def forward(self, x, shape_context):
if self.residual:
out = self.linear(x)
resid = self.activation1(out)
gamma = self.film1(shape_context)
beta = self.film2(shape_context)
out = gamma * out + beta
out = self.activation2(out)
out = out + resid
else:
out = self.linear(x)
gamma = self.film1(shape_context)
beta = self.film2(shape_context)
out = gamma * out + beta
out = self.activation1(out)
return out
class Linear(pl.LightningModule):
''' dummy wrapper around linear to support (ignoring) shape context param'''
def __init__(self, in_dim, out_dim, context_dim=64, residual=False):
super().__init__()
self.linear = nn.Linear(in_dim, out_dim)
def forward(self, x, shape_context=None): #ignore shape context
out = self.linear(x)
return out
import torch
from torch import nn
class NeRF_Embedding(nn.Module):
def __init__(self, in_channels, N_freqs, logscale=True):
"""
Defines a function that embeds x to (x, sin(2^k x), cos(2^k x), ...)
in_channels: number of input channels (3 for both xyz and direction)
"""
super(NeRF_Embedding, self).__init__()
self.N_freqs = N_freqs
self.in_channels = in_channels
self.funcs = [torch.sin, torch.cos]
self.out_channels = in_channels*(len(self.funcs)*N_freqs+1)
if logscale:
self.freq_bands = 2**torch.linspace(0, N_freqs-1, N_freqs)
else:
self.freq_bands = torch.linspace(1, 2**(N_freqs-1), N_freqs)
def forward(self, x):
"""
Embeds x to (x, sin(2^k x), cos(2^k x), ...)
Different from the paper, "x" is also in the output
See https://github.com/bmild/nerf/issues/12
Inputs:
x: (B, self.in_channels)
Outputs:
out: (B, self.out_channels)
"""
out = [x]
for freq in self.freq_bands:
for func in self.funcs:
out += [func(freq*x)]
return torch.cat(out, -1)
class NeRF_Fourier(pl.LightningModule):
def __init__(self,
context_dim=64,
input_size=2,
output_size=5,
D=8, W=256,
L_embed=10,
skips=[4],
hidden_dims = None, # dummy
embed_type = 'nerf',
activation = nn.ReLU,
sigma = 2.5,
context_type='VAE'):
"""
D: number of layers for density (sigma) encoder
W: number of hidden units in each layer
skips: add skip connection in the Dth layer
"""
super(NeRF_Fourier, self).__init__()
self.context_type = context_type
if context_dim > 0:
Layer = FiLMLinear
else:
Layer = Linear
self.context_dim = context_dim
self.embed_type = embed_type
self.L_embed = L_embed
self.D = D
self.W = W
self.skips = skips
if embed_type == 'nerf':
self.embedding_xyz = NeRF_Embedding(input_size, L_embed, logscale=True) # 10 is the default number
self.in_channels_xyz = input_size * (
len(self.embedding_xyz.funcs) * self.embedding_xyz.N_freqs + 1) # in_channels_xyz
else:
self.B = calcB(m=L_embed, d=input_size, sigma=sigma)
self.in_channels_xyz = L_embed*2 + input_size #+ 1 #
# xyz encoding layers
for i in range(D):
if i == 0:
layer = Layer(self.in_channels_xyz, W, context_dim=self.context_dim)
elif i in skips:
layer = Layer(W+self.in_channels_xyz, W, context_dim=self.context_dim)
else:
layer = Layer(W, W, context_dim=self.context_dim)
layer = _Sequential(layer, activation(True))
setattr(self, f"xyz_encoding_{i+1}", layer)
self.xyz_encoding_final = Layer(W, W, context_dim=self.context_dim)
# output layers (real and imag)
# or if using phase loss, out_dim may be 5
self.fourier = Layer(W, output_size, context_dim=self.context_dim)
def set_B(self, B):
self.B = B
def forward(self, x, context=None):
"""
Encodes input (xyz+dir) to rgb+sigma (not ready to render yet).
For rendering this ray, please see rendering.py
Inputs:
x: (B, self.in_channels_xyz(+self.in_channels_dir))
the embedded vector of position and direction
sigma_only: whether to infer sigma only. If True,
x is of shape (B, self.in_channels_xyz)
Outputs:
if sigma_ony:
sigma: (B, 1) sigma
else:
out: (B, 4), rgb and sigma
"""
if self.embed_type == 'nerf':
embedded_x = self.embedding_xyz(x)
else:
embedded_x = fourierfeat_enc(x, self.B)
input_xyz = embedded_x
xyz_ = input_xyz
for i in range(self.D):
if i in self.skips:
xyz_ = torch.cat([input_xyz, xyz_], -1)
xyz_ = getattr(self, f"xyz_encoding_{i+1}")(xyz_, context)
fourier = self.fourier(xyz_, context)
return fourier
class _Sequential(nn.Sequential):
def forward(self, input, shape_context=None):
for module in self._modules.values():
if type(module) == FiLMLinear or type(module) == _Sequential:
input = module(input, shape_context=shape_context)
else:
input = module(input)
return input
class NeRF_Fourier_Two_Heads(nn.Module):
def __init__(self,
input_size=2,
output_size=5,
D=8, W=256,
L_embed=10,
skips=[4],
embed_type = 'nerf',
activation = nn.ReLU,
sigma = 2.5,
):
"""
D: number of layers for density (sigma) encoder
W: number of hidden units in each layer
skips: add skip connection in the Dth layer
"""
super(NeRF_Fourier_Two_Heads, self).__init__()
self.D = D
self.W = W
self.skips = skips
self.embed_type = embed_type
if embed_type == 'nerf':
self.embedding_xyz = NeRF_Embedding(input_size, L_embed, logscale=True) # 10 is the default number
self.in_channels_xyz = input_size * (
len(self.embedding_xyz.funcs) * self.embedding_xyz.N_freqs + 1) # in_channels_xyz
else:
self.B = calcB(m=L_embed, d=input_size, sigma=sigma)
self.in_channels_xyz = L_embed*2 + input_size + 1
# xyz encoding layers
for i in range(D):
if i == 0:
layer = nn.Linear(self.in_channels_xyz, W)
elif i in skips:
layer = nn.Linear(W+self.in_channels_xyz, W)
else:
layer = nn.Linear(W, W)
layer = nn.Sequential(layer, activation(True))
setattr(self, f"xyz_encoding_{i+1}", layer)
#self.xyz_encoding_final = nn.Linear(W, W)
# output layers (real and imag)
# or if using phase loss, out_dim may be 5
self.ampl = nn.Sequential(
nn.Linear(W, W),
activation(True),
nn.Linear(W, 1))
self.phase = nn.Sequential(
nn.Linear(W, W),
activation(True),
nn.Linear(W, output_size-1))
def forward(self, x):
"""
Encodes input (xyz+dir) to rgb+sigma (not ready to render yet).
For rendering this ray, please see rendering.py
Inputs:
x: (B, self.in_channels_xyz(+self.in_channels_dir))
the embedded vector of position and direction
sigma_only: whether to infer sigma only. If True,
x is of shape (B, self.in_channels_xyz)
Outputs:
if sigma_ony:
sigma: (B, 1) sigma
else:
out: (B, 4), rgb and sigma
"""
if self.embed_type == 'nerf':
embedded_x = self.embedding_xyz(x)
else:
embedded_x = fourierfeat_enc(x, self.B)
input_xyz = embedded_x
xyz_ = input_xyz
for i in range(self.D):
if i in self.skips:
xyz_ = torch.cat([input_xyz, xyz_], -1)
xyz_ = getattr(self, f"xyz_encoding_{i+1}")(xyz_)
amp = self.ampl(xyz_)
phase = self.phase(xyz_)
return torch.cat([amp, phase], -1)