Skip to content

Latest commit

 

History

History
150 lines (105 loc) · 6.26 KB

readme.md

File metadata and controls

150 lines (105 loc) · 6.26 KB

Speeding Up Genetic Programming Based Symbolic Regression Using GPUs



Introduction

Symbolic regression can represent relationships from data as a concise and interpretable function. Symbolic regression is achieved as an optimization problem. Given a dataset $(X, y)$, symbolic regression is achieved by optimizing an interpretable function $f(X) : \mathbb{R}^n \to \mathbb{R}$ to minimize the loss $D(f(x), y)$.

This work leverages GPU's computing capability to speed up Genetic Programming (GP) based symbolic regression.

Arguments

Name Type Explanation
population_size int --
generations int --
tournament_size int --
stopping_criteria float If the minimum metric is less than stopping_criteria, than stop iteration.
constant_range pair<float, float> The range of constant nodes.
init_depth pair<int, int> The range of program's initial depth.
init_method InitMemthod Population initialization method.
function_set vector<Function> --
metric Metric Metric type.
restrict_depth bool Weather to limit the depth of programs.
max_program_depth int Valid when restrict_depth is true. If a program's depth is more than max_program_depth, it will be performed hoist mutation until it reaches the required depth.
parsimony_coefficient float Since the program is expected to be concise, an extra penalty is added to the length of the program. $loss^{\prime} = loss + parsimony_coefficient * program.length$.
p_crossover float --
p_subtree_mutation float --
p_hoist_mutation float --
p_point_mutation float --
p_point_replace float --
p_constant float The probability that the terminal is a constant.
use_gpu bool Weather to perfrom GPU acceleration.
best_program Program Records the program with the least loss in the last population.
best_program_in_each_gen vector<Program> Records programs with the least loss in each population.
regress_time_in_sec float Records the regression time.

Run Symbolic Regression

Environment: CUDA Version >= 9.0

1. Prepare Dataset

Suppose we want to do a 2-dim regression for $f(a, b)$, which has following properties: $f(1, 2) = 3, f(2, 3) = 5, f(1, 1) = 2$. Then, we should prepare dataset and real-value set in the following format.

#include "include/cusr.h"
using namesapce std;

typedef vector<vector<float>> dataset_t; 
typedef vector<float> real_t;

/* **************************************************************************************
 * Suppose we want to do a 2-dim regression for f(a, b), which has following properties:
 * f(1, 2) = 3, f(2, 3) = 5, f(1, 1) = 2.
 * Then, we should prepare dataset and real-value set in the following format.
 * ************************************************************************************** */

dataset_t dataset = {{1, 2}, {2, 3}, {1, 1}, {....}};
real_t real_value = {3, 5, 2, ..};

2. Specify GPU Device

The CUSR does not support running on multiple GPUs currently.

/* **************************************************************************************
 * If there are multiple GPUs on your device, specify the needed one.
 * Skip this step if your device has single GPU.
 * ************************************************************************************** */

void choose_gpu() {
	int count;
  cudaGetDeviceCount(&count);
  
  if(count == 0) {
    cerr << "There is no required GPU device." << endl;
    return;
  }
  
  cout << "Input GPU id" << endl;
  
  int gpu_id;
  cin >> gpu_id;
  cudaSetDevice(gpu_id);
}

3. Set Arguments, Do Regression, and Print Results

int main() {
	
  // Specify GPU, skip if there is only one GPU.
	choose_gpu();

  // Create a regression engine.
  cusr::RegressionEngine reg;

  // Set arguments.
  reg.function_set = { _add, _cos, _sub, _div, _tan, _mul, _sin };
  reg.use_gpu = true;            
  reg.max_program_depth = 10;                      
  reg.population_size = 50;
  reg.generations = 50;
  reg.parsimony_coefficient = 0;        
  reg.const_range = {-5, 5};     
  reg.init_depth = {4, 10};      
  reg.init_method = init_t::half_and_half;  
  reg.tournament_size = 3;                  
  reg.metric = metric_t::root_mean_square_error; 

  // Train
  reg.fit(dataset, real_value); 
	
  // After regression
  // Print results ...
  cout << "Execution Time: " << reg.regress_time_in_sec << endl;
  cout << "Best Fitness  : " << reg.best_program.fitness << endl;
  cout << "Best Program (in prefix):  " << cusr::program::prefix_to_string(reg.best_program.prefix) << endl;
  cout << "Best Program (in infix) :  " << cusr::program::prefix_to_infix(reg.best_program.prefix) << endl;
  
  return 0;
}

4. Compile and Run

nvcc -o sr main.cu src/*.cu
./sr