forked from qutobnadia/AGN
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathGas_Projection_June30_m12_mcvt_m2_t95_3000_tor4.py
240 lines (191 loc) · 9.69 KB
/
Gas_Projection_June30_m12_mcvt_m2_t95_3000_tor4.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
import matplotlib
matplotlib.use('Agg')
import matplotlib.pyplot as plt
import numpy as np
#import illustris_python as il
import h5py
#import illustris_python.snapshot as snapp
import os
import sys
import sphviewer
import pdb
from matplotlib.pyplot import cm
from mpl_toolkits.axes_grid1 import make_axes_locatable
from sphviewer.tools import QuickView
from glob import glob
import trident
import yt
import trident
from numpy import *
from yt import *
yt.enable_parallelism()
from mpl_toolkits.axes_grid1 import AxesGrid
#import glob
from yt import YTQuantity
from matplotlib.pyplot import *
from matplotlib.pyplot import cm
unit_base = {'UnitLength_in_cm' : 3.08568e+21,
'UnitMass_in_g' : 1.989e+43,
'UnitVelocity_in_cm_per_s' : 100000}
"""
Here we present some explanations.
Camera:
The Camera class is a container that stores the camera parameters. The camera is an object that lives in the space and has spherical coordinates (r,theta,phi), centred around the location (x,y,z). Angles *theta* and *phi* are given in degrees, and enable to rotate the camera along the x-axis and y-axis, respectively. The *roll* angle induces rotations along the line-of-sight, i.e., the z-axis.
"""
### Interesting toturial: http://alejandrobll.github.io/py-sphviewer/content/tutorial_projections.html
### Here we study the density profile of the gas particles. We consider two different cases. 1) When we take into account all of the gas particles and monitor their density profile. 2) When we consider the star forming gas and see how do they look like!!!
#data.keys()
#data["PartType0"].keys()
"""
<KeysViewHDF5 ['CoolingRate', 'Coordinates', 'Density', 'DivBcleaningFunctionGradPhi', 'DivBcleaningFunctionPhi', 'DivergenceOfMagneticField', 'ElectronAbundance', 'HeatingRate', 'HydroHeatingRate', 'IMFFormationProperties', 'InternalEnergy', 'MagneticField', 'Masses', 'MetalCoolingRate', 'Metallicity', 'NetHeatingRateQ', 'NeutralHydrogenAbundance', 'ParticleChildIDsNumber', 'ParticleIDGenerationNumber', 'ParticleIDs', 'SmoothingLength', 'StarFormationRate', 'Velocities']>
"""
# you could put a for loop here that replaces 'm12_mcvt_m2_10000_tor4_pr45_100Myr' with whaterver directories are in /hernquist_lab/AGN_Feedback_Fire then goes to the 'output' folder in each
print("Checkpoint 0")
Directory_path = '/n/holylfs05/LABS/hernquist_lab/AGN_Feedback_Fire/m12_mcvt_m2_t95_3000_tor4/output/'
diir = glob(Directory_path + '*.hdf5')
List_diir = np.atleast_1d(diir)
snap_order = []
List_diir_image = []
print("Checkpoint 0A")
# this calls all of the snapshots in the output folder
for ii in range(len(List_diir)):
AA = List_diir[ii]
snap_ii = int(AA[AA.find('snapshot_')+len('snapshot_'):AA.find('.hdf5')])
snap_order = np.append(snap_order, [snap_ii])
List_diir_image = np.append(List_diir_image, List_diir[ii])
# add txt conversion line later!
print("Checkpoint 0B")
# this puts the snapshots in the correct numerical order when they are runa nd saved
int_snap = snap_order.astype(int)
sorted = np.sort(int_snap)
List_diir = List_diir_image[np.argsort(int_snap)]
print("Checkpoint 0C")
#@derived_field(name= ('PartType0', 'number_density'), units="cm**(-3)", sampling_type="cell",force_override=True)
#def _dinos(field, data):
# x_H=0.76
# proton_mass=YTArray([1.67262178*10**-24],'g')
# particlemass = 4.0 / (3.0*x_H + 1.0 + 4.0*x_H*np.array(data[('PartType0','ElectronAbundance')]))*proton_mass
# den= data['PartType0','Density'] /particlemass
# return den
oo = 0
for fname in List_diir:
data = h5py.File(fname,"r")
BH_Center = data["PartType5"]["Coordinates"][:]
print(BH_Center)
BH_Center = data["PartType5"]["Coordinates"][:]
Gas_location = data["PartType0"]["Coordinates"][:] - BH_Center
Gas_mass = 1e10*data["PartType0"]["Masses"][:]
Gas_Softening = data["PartType0"]["SmoothingLength"][:]
print("Checkpoint 1")
# this is where I started adding additional parameters
ds = yt.load(fname, unit_base=unit_base)
#print("checkpoint 1A")
#ds = yt.load(Directory_path)
ions_names=['H I','Mg II','C IV','N V','O VI', 'O VII', 'O VIII', 'Ne VIII'] ## Exploration!
trident.add_ion_fields(ds, ions=ions_names, ftype="PartType0")
#print("Checkpoint 1B")
# H1_Number = ds.all_data()[('PartType0', 'H_p1_number_density')]
# O6_ion_Fraction = ds.all_data()[('gas', 'O_p6_ion_fraction')]
# O6_ion_mass = ds.all_data()[('gas', 'O_p6_ion_mass')] # MIGHT NEED TO CHANGE THIS TO SAY MASS INSTEAD OF DENSITY
# Oxygen6 = O6_ion_Fraction
Oxygen6_mass = ds.all_data()[('gas', 'O_p6_ion_fraction')] # THIS LINE ISNT DONE!!!!
print("Checkpoint 2")
NN = 100 # this defines the x, y, and z axis ranges for the plots
#mass = np.ones(len(gas_Loc[:,0]))
hh = Gas_Softening
mass = Gas_mass
Particles = sphviewer.Particles(Gas_location, Oxygen6_mass, hh)
Scene = sphviewer.Scene(Particles)
fig = plt.figure(1,figsize=(15,5))
#set a figure title on top
fig.suptitle(r"Hot thermal jet with higher energy flux: Snapshot #" + str(sorted[oo]+1) + " with Gas_mass and O6_ion_Fraction", fontsize=17, x=0.5, y=1.5)
plt.subplots_adjust(top =1.8, bottom=0.2, hspace=0.3, wspace=0.3)
ax1 = fig.add_subplot(131)
ax2 = fig.add_subplot(132)
ax3 = fig.add_subplot(133)
extendd = [-NN,NN,-NN,NN]
Scene.update_camera(r='infinity', t=0, p = 0, roll = 0, x = 0, y = 0, z = 0, vmin= 6.3, vmax= 7.4, extent= extendd)
print("Checkpoint 3")
Render = sphviewer.Render(Scene)
Render.set_logscale()
img1 = Render.get_image()
extent1 = Render.get_extent()
divider = make_axes_locatable(ax1)
#ax1.imshow(img1, extent=extent1, origin='lower', cmap=plt.cm.jet, vmax= 3.0, rasterized=True)
image1 = ax1.imshow(img1, extent=extent1, origin='lower', cmap=plt.cm.jet, rasterized=True, vmin=1, vmax=3) # added vmin and vmax parameters for the color bar
divider = make_axes_locatable(ax1)
cax = divider.new_vertical(size="7%", pad=0.7, pack_start=True)
fig.add_axes(cax)
cb = fig.colorbar(image1, cax=cax, orientation="horizontal") # do not add vmin or vmax here
#cb.set_label(label='Temperature ($^{\circ}$C)', size='large', weight='bold')
cb.ax.tick_params(labelsize=15)
#cb = fig.colorbar(img1, cax=cax, orientation="horizontal")
#cb = fig.colorbar(img1)
#cb.set_label(label='Temperature ($^{\circ}$C)', size='large', weight='bold')
#cb.ax.tick_params(labelsize=15)
#ax1.set_title(labb_tit[uu])
ax1.set_xlabel('$X$(kpc)', size=12)
ax1.set_ylabel('$Y$(kpc)', size=12)
Scene.update_camera(r='infinity', t=-90, p = -90, roll = 0, x = 0, y = 0, z = 0, vmin= 6.3, vmax= 7.4, extent= extendd)
Render = sphviewer.Render(Scene)
Render.set_logscale()
img2 = Render.get_image()
extent2 = Render.get_extent()
#divider = make_axes_locatable(ax2)
#ax2.imshow(img2, extent=extent2, origin='lower',cmap=plt.cm.jet, vmax= 3.0, rasterized=True)
#image2 = ax2.imshow(img2/imag3, extent=extent2, origin='lower',cmap=plt.cm.jet, rasterized=True)
image2 = ax2.imshow(img2, extent=extent2, origin='lower', cmap=plt.cm.jet, rasterized=True)
divider = make_axes_locatable(ax2)
cax = divider.new_vertical(size="7%", pad=0.7, pack_start=True)
fig.add_axes(cax)
cb = fig.colorbar(image2, cax=cax, orientation="horizontal")
#cb.set_label(label='Temperature ($^{\circ}$C)', size='large', weight='bold')
cb.ax.tick_params(labelsize=15)
#cax = divider.new_vertical(size="7%", pad=0.7, pack_start=True)
#cb = fig.colorbar(img2)
#fig.add_axes(cax)
#cb = fig.colorbar(img2, cax=cax, orientation="horizontal")
#cb.set_label(label='Temperature ($^{\circ}$C)', size='large', weight='bold')
#cb.ax.tick_params(labelsize=15)
#ax1.set_title(labb_tit[uu])
#ax2.set_title(labb_tit[uu])
ax2.set_xlabel('$Y$(kpc)', size=12)
ax2.set_ylabel('$Z$(kpc)', size=12)
Scene.update_camera(r='infinity', t=90, p = 0, roll = -90, x = 0, y = 0, z = 0, vmin= 6.3, vmax= 7.4, extent= extendd)
Render = sphviewer.Render(Scene)
Render.set_logscale()
img3 = Render.get_image()
extent3 = Render.get_extent()
divider = make_axes_locatable(ax3)
#ax3.imshow(img3, extent=extent3, origin='lower', cmap=plt.cm.jet, vmax= 3.0, rasterized=True)
image3 = ax3.imshow(img3, extent=extent2, origin='lower',cmap=plt.cm.jet, rasterized=True)
cax = divider.new_vertical(size="7%", pad=0.7, pack_start=True)
fig.add_axes(cax)
cb = fig.colorbar(image3, cax=cax, orientation="horizontal")
#cb.set_label(label='Temperature ($^{\circ}$C)', size='large', weight='bold')
cb.ax.tick_params(labelsize=15)
#cax = divider.new_vertical(size="7%", pad=0.7, pack_start=True)
#fig.add_axes(cax)
#cb = fig.colorbar(img2)
#cb = fig.colorbar(img3, cax=cax, orientation="horizontal")
#cb.set_label(label='Temperature ($^{\circ}$C)', size='large', weight='bold')
#cb.ax.tick_params(labelsize=15)
#ax1.set_title(labb_tit[uu])
#ax3.set_title(labb_tit[uu])
ax3.set_xlabel('$Z$(kpc)', size=12)
ax3.set_ylabel('$X$(kpc)', size=12)
Default_dir = '/n/home13/nqutob/AGN_Feedback/ion_snapshots/' + 'm12_mcvt_m2_t95_3000_tor4'
Default_dir_pdf = '/n/home13/nqutob/AGN_Feedback/ion_snapshots/' + 'm12_mcvt_m2_t95_3000_tor4_pdf'
try:
os.mkdir(Default_dir)
except:
pass
try:
os.mkdir(Default_dir_pdf)
except:
pass
plt.savefig(Default_dir + '/Fire' + str(sorted[oo]).zfill(3) + '.png', dpi = 600, transparent = True, bbox_inches='tight')
plt.savefig(Default_dir_pdf + '/Fire' + str(sorted[oo]).zfill(3) + '.pdf', dpi = 600, transparent = True, bbox_inches='tight')
plt.close()
oo += 1
#pdb.set_trace()