-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathapp.py
164 lines (137 loc) · 6.35 KB
/
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
from flask import Flask, jsonify, request
from flask_sqlalchemy import SQLAlchemy
from tensorflow.keras.preprocessing import image
import numpy as np
import os
import tensorflow as tf
app = Flask(__name__)
# Konfigurasi SQLAlchemy untuk database MySQL
app.config['SQLALCHEMY_DATABASE_URI'] = 'mysql://root:@localhost/fitfans'
app.config['SQLALCHEMY_TRACK_MODIFICATIONS'] = False
db = SQLAlchemy(app)
# Model untuk tabel pengguna
class User(db.Model):
id = db.Column(db.Integer, primary_key=True)
full_name = db.Column(db.String(100), nullable=False)
age = db.Column(db.Integer, nullable=False)
weight = db.Column(db.Float, nullable=False)
height = db.Column(db.Float, nullable=False)
gender = db.Column(db.String(10), nullable=False)
email = db.Column(db.String(50), unique=True, nullable=False)
with app.app_context():
# Buat tabel pada database
db.create_all()
# Endpoint untuk mendapatkan data dari tabel users
@app.route('/users', methods=['GET'])
def users_endpoint():
try:
user_id = request.args.get('user_id')
user_email = request.args.get('user_email')
if user_id and user_email:
return jsonify({'error': 'Provide either user_id or user_email, not both.'}), 400
elif user_id:
user = User.query.get(user_id)
if user:
return jsonify({'user': {'id': user.id, 'full_name': user.full_name, 'age': user.age, 'weight': user.weight, 'height': user.height, 'gender': user.gender, 'email': user.email}}), 200
else:
return jsonify({'message': 'User not found'}), 404
elif user_email:
user = User.query.filter_by(email=user_email).first()
if user:
return jsonify({'user': {'id': user.id, 'full_name': user.full_name, 'age': user.age, 'weight': user.weight, 'height': user.height, 'gender': user.gender, 'email': user.email}}), 200
else:
return jsonify({'message': 'User not found'}), 404
else:
users = User.query.all()
user_list = [{'id': user.id, 'full_name': user.full_name, 'age': user.age, 'weight': user.weight, 'height': user.height, 'gender': user.gender, 'email': user.email} for user in users]
return jsonify({'users': user_list}), 200
except Exception as e:
print(str(e))
return jsonify({'error': 'Internal Server Error'}), 500
# Endpoint untuk menambahkan pengguna baru
@app.route('/users', methods=['POST'])
def add_user():
try:
new_user_data = request.json
if not new_user_data or not all(key in new_user_data for key in ['full_name', 'age', 'weight', 'height', 'gender', 'email']):
return jsonify({'error': 'Bad Request - Invalid User Data'}), 400
new_user = User(**new_user_data)
db.session.add(new_user)
db.session.commit()
return jsonify({'message': 'User added successfully', 'user': {'id': new_user.id, 'full_name': new_user.full_name, 'age': new_user.age, 'weight': new_user.weight, 'height': new_user.height, 'gender': new_user.gender, 'email': new_user.email}}), 201
except Exception as e:
print(str(e))
return jsonify({'error': 'Internal Server Error'}), 500
# Endpoint untuk mengedit pengguna
@app.route('/users/<int:user_id>', methods=['PUT'])
def edit_user(user_id):
try:
user = User.query.get(user_id)
if user:
updated_user_data = request.json
if not updated_user_data or not all(key in updated_user_data for key in ['full_name', 'age', 'weight', 'height', 'gender', 'email']):
return jsonify({'error': 'Bad Request - Invalid User Data'}), 400
user.full_name = updated_user_data['full_name']
user.age = updated_user_data['age']
user.weight = updated_user_data['weight']
user.height = updated_user_data['height']
user.gender = updated_user_data['gender']
user.email = updated_user_data['email']
db.session.commit()
return jsonify({'message': 'User updated successfully', 'user': {'id': user.id, 'full_name': user.full_name, 'age': user.age, 'weight': user.weight, 'height': user.height, 'gender': user.gender, 'email': user.email}}), 200
else:
return jsonify({'message': 'User not found'}), 404
except Exception as e:
print(str(e))
return jsonify({'error': 'Internal Server Error'}), 500
# Endpoint untuk menghapus pengguna
@app.route('/users/<int:user_id>', methods=['DELETE'])
def delete_user(user_id):
try:
user = User.query.get(user_id)
if user:
db.session.delete(user)
db.session.commit()
return jsonify({'message': 'User deleted successfully'}), 204
else:
return jsonify({'message': 'User not found'}), 404
except Exception as e:
print(str(e))
return jsonify({'error': 'Internal Server Error'}), 500
# Load pre-trained model
model = tf.keras.models.load_model('Gym_Tools_Multi.h5')
# Nama kelas untuk prediksi
class_names = ['barbell', 'dumbell', 'gym-ball', 'kattle-ball', 'leg-press', 'punching-bag', 'roller-abs', 'statis-bicycle', 'step', 'treadmill']
# Fungsi untuk memprediksi kelas gambar
def predict_image_class(img_path):
img = image.load_img(img_path, target_size=(150, 150))
img = image.img_to_array(img)
img = np.expand_dims(img, axis=0)
img /= 255.
predictions = model.predict(img)
max_probability = np.max(predictions)
if max_probability < 0.5:
return "Gambar tidak dikenali"
else:
predicted_class = np.argmax(predictions)
return class_names[predicted_class]
# Endpoint untuk prediksi gambar
@app.route('/predict', methods=['POST'])
def predict_endpoint():
if 'file' not in request.files:
return jsonify({'error': 'No file part'})
file = request.files['file']
if file.filename == '':
return jsonify({'error': 'No selected file'})
# Simpan gambar yang diunggah
upload_path = 'uploads'
if not os.path.exists(upload_path):
os.makedirs(upload_path)
file_path = os.path.join(upload_path, file.filename)
file.save(file_path)
# Prediksi kelas untuk gambar yang diunggah
predicted_class = predict_image_class(file_path)
# Kembalikan hasil prediksi
return jsonify({'prediction': predicted_class})
if __name__ == '__main__':
app.run(debug=True)