forked from spcl/ncc
-
Notifications
You must be signed in to change notification settings - Fork 0
/
task_utils.py
414 lines (350 loc) · 18.8 KB
/
task_utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
# NCC: Neural Code Comprehension
# https://github.com/spcl/ncc
# Copyright 2018 ETH Zurich
# All rights reserved.
#
# Redistribution and use in source and binary forms, with or without modification, are permitted provided that the follo
# wing conditions are met:
# 1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following
# disclaimer.
# 2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following
# disclaimer in the documentation and/or other materials provided with the distribution.
# 3. Neither the name of the copyright holder nor the names of its contributors may be used to endorse or promote
# products derived from this software without specific prior written permission.
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES,
# INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
# DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
# SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
# SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
# WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
# ==============================================================================
"""Helper variables and functions for NCC task training"""
import struct
import pickle
import os
import re
import wget
import zipfile
import rgx_utils as rgx
from inst2vec import inst2vec_preprocess as i2v_prep
from collections import defaultdict
from absl import flags
# Embedding and vocabulary file paths
flags.DEFINE_string('embeddings_file', 'published_results/emb.p',
'Path to the embeddings file')
flags.DEFINE_string('vocabulary_dir', 'published_results/vocabulary',
'Path to the vocabulary folder associated with those embeddings')
FLAGS = flags.FLAGS
########################################################################################################################
# Downloading data sets
########################################################################################################################
def download_and_unzip(url, dataset_name, data_folder):
"""
Download and unzip data set folder from url
:param url: from which to download
:param dataset_name: name of data set (for printing)
:param data_folder: folder in which to put the downloaded data
"""
print('Downloading', dataset_name, 'data set...')
if not os.path.exists(data_folder):
os.makedirs(data_folder)
data_zip = wget.download(url, out=data_folder)
print('\tunzipping...')
zip_ = zipfile.ZipFile(data_zip, 'r')
assert os.path.isdir(data_folder), data_folder
zip_.extractall(data_folder)
zip_.close()
print('\tdone')
########################################################################################################################
# Reading, writing and dumping files
########################################################################################################################
def get_embeddings():
"""
Load embedding matrix from file
:return:
"""
assert os.path.exists(FLAGS.embeddings_file), "File " + FLAGS.embeddings_file + " does not exist"
print('Loading pre-trained embeddings from', FLAGS.embeddings_file)
with open(FLAGS.embeddings_file, 'rb') as f:
embedding_matrix = pickle.load(f)
vocabulary_size, embedding_dimension = embedding_matrix.shape
print('\n--- Loaded embeddings with vocabulary size : {}\n'.format(vocabulary_size),
'\t with embedding dimension: {}'.format(embedding_dimension),
'\n\tfrom file:', FLAGS.embeddings_file)
return embedding_matrix
########################################################################################################################
# Utils (Preprocess files)
########################################################################################################################
def inline_struct_types_in_file(data, dic):
"""
Inline structure types in the whole file
:param data: list of strings representing the content of one file
:param dic: dictionary ["structure name", "corresponding literal structure"]
:return: modified data
"""
# Remove all "... = type {..." statements since we don't need them anymore
data = [stmt for stmt in data if not re.match('.* = type ', stmt)]
# Inline the named structures throughout the file
for i in range(len(data)):
possible_struct = re.findall('(' + rgx.struct_name + ')', data[i])
if len(possible_struct) > 0:
for s in possible_struct:
if s in dic and not re.match(s + r'\d* = ', data[i]):
# Replace them by their value in dictionary
data[i] = re.sub(re.escape(s) + rgx.struct_lookahead, dic[s], data[i])
return data
def inline_struct_types_txt(data, data_with_structure_def):
"""
Inline structure types so that the code has no more named structures but only explicit aggregate types
And construct a dictionary of these named structures
:param data: input data as a list of files where each file is a list of strings
:return: data: modified input data
dictio: list of dictionaries corresponding to source files,
where each dictionary has entries ["structure name", "corresponding literal structure"]
"""
print('\tConstructing dictionary of structures and inlining structures...')
dictio = defaultdict(list)
# Loop on all files in the dataset
for i in range(len(data)):
# Construct a dictionary ["structure name", "corresponding literal structure"]
data_with_structure_def[i], dict_temp = \
i2v_prep.construct_struct_types_dictionary_for_file(data_with_structure_def[i])
# If the dictionary is empty
if not dict_temp:
found_type = False
for l in data[i]:
if re.match(rgx.struct_name + ' = type (<?\{ .* \}|opaque|{})', l):
found_type = True
break
assert not found_type, "Structures' dictionary is empty for file containing type definitions: \n" + \
data[i][0] + '\n' + data[i][1] + '\n' + data[i] + '\n'
# Use the constructed dictionary to substitute named structures
# by their corresponding literal structure throughout the program
data[i] = inline_struct_types_in_file(data[i], dict_temp)
# Add the entries of the dictionary to the big dictionary
for k, v in dict_temp.items():
dictio[k].append(v)
return data, dictio
def abstract_statements_from_identifiers_txt(data):
"""
Simplify lines of code by stripping them from their identifiers,
unnamed values, etc. so that LLVM IR statements can be abstracted from them
:param data: input data as a list of files where each file is a list of strings
:return: modified input data
"""
data = remove_local_identifiers(data)
data = remove_global_identifiers(data)
data = remove_labels(data)
data = replace_unnamed_values(data)
data = remove_index_types(data)
return data
def remove_local_identifiers(data):
"""
Replace all local identifiers (%## expressions) by "<%ID>"
:param data: input data as a list of files where each file is a list of strings
:return: modified input data
"""
print('\tRemoving local identifiers ...')
for i in range(len(data)):
for j in range(len(data[i])):
data[i][j] = re.sub(rgx.local_id, "<%ID>", data[i][j])
return data
def remove_global_identifiers(data):
"""
Replace all local identifiers (@## expressions) by "<@ID>"
:param data: input data as a list of files where each file is a list of strings
:return: modified input data
"""
print('\tRemoving global identifiers ...')
for i in range(len(data)):
for j in range(len(data[i])):
data[i][j] = re.sub(rgx.global_id, "<@ID>", data[i][j])
return data
def remove_labels(data):
"""
Replace label declarations by token '<LABEL>'
:param data: input data as a list of files where each file is a list of strings
:return: modified input data
"""
print('\tRemoving labels ...')
for i in range(len(data)):
for j in range(len(data[i])):
if re.match(r'; <label>:\d+:?(\s+; preds = )?', data[i][j]):
data[i][j] = re.sub(r":\d+", ":<LABEL>", data[i][j])
data[i][j] = re.sub("<%ID>", "<LABEL>", data[i][j])
elif re.match(rgx.local_id_no_perc + r':(\s+; preds = )?', data[i][j]):
data[i][j] = re.sub(rgx.local_id_no_perc + ':', "<LABEL>:", data[i][j])
data[i][j] = re.sub("<%ID>", "<LABEL>", data[i][j])
if '; preds = ' in data[i][j]:
s = data[i][j].split(' ')
if s[-1][0] == ' ':
data[i][j] = s[0] + s[-1]
else:
data[i][j] = s[0] + ' ' + s[-1]
return data
def replace_unnamed_values(data):
"""
Replace unnamed_values by abstract token:
integers: <INT>
floating points: <FLOAT> (whether in decimal or hexadecimal notation)
string: <STRING>
:param data: input data as a list of files where each file is a list of strings
:return: modified input data
"""
print('\tRemoving immediate values ...')
for i in range(len(data)):
for j in range(len(data[i])):
data[i][j] = re.sub(r' ' + rgx.immediate_value_float_hexa, " <FLOAT>", data[i][j]) # hexadecimal notation
data[i][j] = re.sub(r' ' + rgx.immediate_value_float_sci, " <FLOAT>", data[i][j]) # decimal / scientific
if re.match("<%ID> = extractelement", data[i][j]) is None and \
re.match("<%ID> = extractvalue", data[i][j]) is None and \
re.match("<%ID> = insertelement", data[i][j]) is None and \
re.match("<%ID> = insertvalue", data[i][j]) is None:
data[i][j] = re.sub(r'(?<!align)(?<!\[) ' + rgx.immediate_value_int, " <INT>", data[i][j])
data[i][j] = re.sub(rgx.immediate_value_string, " <STRING>", data[i][j])
return data
def remove_index_types(data):
"""
Replace the index type in expressions containing "extractelement" or "insertelement" by token <TYP>
:param data: input data as a list of files where each file is a list of strings
:return: modified input data
"""
print('\tRemoving index types ...')
for i in range(len(data)):
for j in range(len(data[i])):
if re.match("<%ID> = extractelement", data[i][j]) is not None or \
re.match("<%ID> = insertelement", data[i][j]) is not None:
data[i][j] = re.sub(r'i\d+ ', '<TYP> ', data[i][j])
return data
########################################################################################################################
# Transform a folder of raw IR into trainable data to be used as input data in tasks
########################################################################################################################
def llvm_ir_to_trainable(folder_ir):
####################################################################################################################
# Setup
assert len(folder_ir) > 0, "Please specify a folder containing the raw LLVM IR"
assert os.path.exists(folder_ir), "Folder not found: " + folder_ir
folder_seq = re.sub('ir', 'seq', folder_ir)
if len(folder_seq) > 0:
print('Preparing to write LLVM IR index sequences to', folder_seq)
if not os.path.exists(folder_seq):
os.makedirs(folder_seq)
# Get sub-folders if there are any
listing = os.listdir(folder_ir + '/')
folders_ir = list()
folders_seq = list()
found_subfolder = False
for path in listing:
if os.path.isdir(os.path.join(folder_ir, path)):
folders_ir.append(os.path.join(folder_ir, path))
folders_seq.append(os.path.join(folder_seq, path))
found_subfolder = True
if found_subfolder:
print('Found', len(folders_ir), 'subfolders')
else:
print('No subfolders found in', folder_ir)
folders_ir = [folder_ir]
folders_seq = [folder_seq]
# Loop over sub-folders
summary = ''
num_folders = len(folders_ir)
for i, raw_ir_folder in enumerate(folders_ir):
l = folders_seq[i] + '/'
if not os.path.exists(l) or len(os.listdir(l)) == 0:
############################################################################################################
# Read files
# Read data from folder
print('\n--- Read data from folder ', raw_ir_folder)
raw_data, file_names = i2v_prep.read_data_files_from_folder(raw_ir_folder)
# Print data statistics and release memory
source_data_list, source_data = i2v_prep.data_statistics(raw_data, descr="reading data from source files")
del source_data_list
# Source code transformation: simple pre-processing
print('\n--- Pre-process code')
preprocessed_data, functions_declared_in_files = i2v_prep.preprocess(raw_data)
preprocessed_data_with_structure_def = raw_data
############################################################################################################
# Load vocabulary and cut off statements
# Vocabulary files
folder_vocabulary = FLAGS.vocabulary_dir
dictionary_pickle = os.path.join(folder_vocabulary, 'dic_pickle')
cutoff_stmts_pickle = os.path.join(folder_vocabulary, 'cutoff_stmts_pickle')
# Load dictionary and cutoff statements
print('\tLoading dictionary from file', dictionary_pickle)
with open(dictionary_pickle, 'rb') as f:
dictionary = pickle.load(f)
print('\tLoading cut off statements from file', cutoff_stmts_pickle)
with open(cutoff_stmts_pickle, 'rb') as f:
stmts_cut_off = pickle.load(f)
stmts_cut_off = set(stmts_cut_off)
############################################################################################################
# IR processing (inline structures, abstract statements)
# Source code transformation: inline structure types
print('\n--- Inline structure types')
processed_data, structures_dictionary = inline_struct_types_txt(preprocessed_data,
preprocessed_data_with_structure_def)
# Source code transformation: identifier processing (abstract statements)
print('\n--- Abstract statements from identifiers')
processed_data = abstract_statements_from_identifiers_txt(processed_data)
############################################################################################################
# Write indexed sequence of statements
seq_folder = folders_seq[i]
if not os.path.exists(seq_folder):
os.makedirs(seq_folder)
# Write indexed sequence of statements to file
unknown_counter_folder = list()
seq_length_folder = list()
file_counter = 0
for file in processed_data:
stmt_indexed = list() # Construct indexed sequence
unknown_counter = 0 # Reset unknown counter
for stmt in file:
# check whether this is a label, in which case we ignore it
if re.match(r'((?:<label>:)?(<LABEL>):|; <label>:<LABEL>)', stmt):
continue
# check whether this is an unknown
if stmt in stmts_cut_off:
stmt = rgx.unknown_token
unknown_counter += 1
# lookup and add to list
if stmt not in dictionary.keys():
print("NOT IN DICTIONARY:", stmt)
stmt = rgx.unknown_token
unknown_counter += 1
stmt_indexed.append(dictionary[stmt])
# Write to csv
file_name_csv = os.path.join(seq_folder, file_names[file_counter][:-3] + '_seq.csv')
file_name_rec = os.path.join(seq_folder, file_names[file_counter][:-3] + '_seq.rec')
with open(file_name_csv, 'w') as csv, open(file_name_rec, 'wb') as rec:
for ind in stmt_indexed:
csv.write(str(ind) + '\n')
rec.write(struct.pack('I', int(ind)))
print('\tPrinted data pairs to file', file_name_csv)
print('\tPrinted data pairs to file', file_name_rec)
print('\t#UNKS', unknown_counter)
# Increment counter
unknown_counter_folder.append(unknown_counter)
seq_length_folder.append(len(stmt_indexed))
file_counter += 1
# Print stats
out = '\n\nFolder: ' + raw_ir_folder + '(' + str(i) + '/' + str(num_folders) + ')'
out += '\n\nNumber of files processed: ' + str(len(seq_length_folder))
out += '\n--- Sequence length stats:'
out += '\nMin seq length : {}'.format(min(seq_length_folder))
out += '\nMax seq length : {}'.format(max(seq_length_folder))
out += '\nAvg seq length : {}'.format(sum(seq_length_folder) / len(seq_length_folder))
out += '\nTotal number stmts: {}'.format(sum(seq_length_folder))
out += '\n--- UNK count stats:'
out += '\nMin #UNKS in a sequence : {}'.format(min(unknown_counter_folder))
out += '\nMax #UNKS in a sequence : {}'.format(max(unknown_counter_folder))
out += '\nAvg #UNKS in a sequence : {}'.format(sum(unknown_counter_folder) / len(unknown_counter_folder))
out += '\nSum #UNKS in all sequence: {} / {}, {}%'.format(sum(unknown_counter_folder),
sum(seq_length_folder),
sum(unknown_counter_folder) * 100 / sum(
seq_length_folder))
print(out)
summary += '\n' + out
# When all is done, print a summary:
print(summary)
return folder_seq