From a5c6aff1c7f8975f83b2dfdcd44e447b75afeb22 Mon Sep 17 00:00:00 2001 From: CasualPokePlayer <50538166+CasualPokePlayer@users.noreply.github.com> Date: Tue, 16 Jan 2024 17:24:29 -0800 Subject: [PATCH] Add 3DS hashing support (#298) --- include/rc_hash.h | 22 ++ src/rhash/aes.c | 480 +++++++++++++++++++++++++++ src/rhash/aes.h | 49 +++ src/rhash/hash.c | 662 +++++++++++++++++++++++++++++++++++++ test/Makefile | 1 + test/rcheevos-test.vcxproj | 2 + 6 files changed, 1216 insertions(+) create mode 100644 src/rhash/aes.c create mode 100644 src/rhash/aes.h diff --git a/include/rc_hash.h b/include/rc_hash.h index a762615c..3a71bceb 100644 --- a/include/rc_hash.h +++ b/include/rc_hash.h @@ -123,6 +123,28 @@ RC_BEGIN_C_DECLS RC_EXPORT void RC_CCONV rc_hash_init_default_cdreader(void); RC_EXPORT void RC_CCONV rc_hash_init_custom_cdreader(struct rc_hash_cdreader* reader); + /* specifies a function called to obtain a 3DS CIA decryption normal key. + * this key would be derived from slot0x3DKeyX and the common key specified by the passed index. + * the normal key should be written in big endian format + * returns non-zero on success, or zero on failure. + */ + typedef int (RC_CCONV *rc_hash_3ds_get_cia_normal_key_func)(uint8_t common_key_index, uint8_t out_normal_key[16]); + RC_EXPORT void RC_CCONV rc_hash_init_3ds_get_cia_normal_key_func(rc_hash_3ds_get_cia_normal_key_func func); + + /* specifies a function called to obtain 3DS NCCH decryption normal keys. + * the primary key will always use slot0x2CKeyX and the passed primary KeyY. + * the secondary key will use the KeyX slot passed + * the secondary KeyY will be identical to the primary keyY if the passed program id is NULL + * if the program id is not null, then the secondary KeyY will be obtained with "seed crypto" + * with "seed crypto" the 8 byte program id can be used to obtain a 16 byte "seed" within the seeddb.bin firmware file + * the primary KeyY then the seed will then be hashed with SHA256, and the upper 16 bytes of the digest will be the secondary KeyY used + * the normal keys should be written in big endian format + * returns non-zero on success, or zero on failure. + */ + typedef int (RC_CCONV *rc_hash_3ds_get_ncch_normal_keys_func)(uint8_t primary_key_y[16], uint8_t secondary_key_x_slot, uint8_t* optional_program_id, + uint8_t out_primary_key[16], uint8_t out_secondary_key[16]); + RC_EXPORT void RC_CCONV rc_hash_init_3ds_get_ncch_normal_keys_func(rc_hash_3ds_get_ncch_normal_keys_func func); + /* ===================================================== */ RC_END_C_DECLS diff --git a/src/rhash/aes.c b/src/rhash/aes.c new file mode 100644 index 00000000..54ed10bc --- /dev/null +++ b/src/rhash/aes.c @@ -0,0 +1,480 @@ +/* This file is sourced from https://github.com/kokke/tiny-AES-c, with unused code excised. + * This code is licensed under the Unlicense license, effectively public domain. + * https://github.com/kokke/tiny-AES-c/blob/f06ac37/unlicense.txt + */ + +/* + +This is an implementation of the AES algorithm, specifically ECB, CTR and CBC mode. +Block size can be chosen in aes.h - available choices are AES128, AES192, AES256. + +The implementation is verified against the test vectors in: + National Institute of Standards and Technology Special Publication 800-38A 2001 ED + +ECB-AES128 +---------- + + plain-text: + 6bc1bee22e409f96e93d7e117393172a + ae2d8a571e03ac9c9eb76fac45af8e51 + 30c81c46a35ce411e5fbc1191a0a52ef + f69f2445df4f9b17ad2b417be66c3710 + + key: + 2b7e151628aed2a6abf7158809cf4f3c + + resulting cipher + 3ad77bb40d7a3660a89ecaf32466ef97 + f5d3d58503b9699de785895a96fdbaaf + 43b1cd7f598ece23881b00e3ed030688 + 7b0c785e27e8ad3f8223207104725dd4 + + +NOTE: String length must be evenly divisible by 16byte (str_len % 16 == 0) + You should pad the end of the string with zeros if this is not the case. + For AES192/256 the key size is proportionally larger. + +*/ + + +/*****************************************************************************/ +/* Includes: */ +/*****************************************************************************/ +#include /* CBC mode, for memset */ +#include "aes.h" + +/*****************************************************************************/ +/* Defines: */ +/*****************************************************************************/ + +/* The number of columns comprising a state in AES. This is a constant in AES. Value=4 */ +#define Nb 4 + +#define Nk 4 /* The number of 32 bit words in a key. */ +#define Nr 10 /* The number of rounds in AES Cipher. */ + +/*****************************************************************************/ +/* Private variables: */ +/*****************************************************************************/ + +/* state - array holding the intermediate results during decryption. */ +typedef uint8_t state_t[4][4]; + +/* The lookup-tables are marked const so they can be placed in read-only storage instead of RAM + * The numbers below can be computed dynamically trading ROM for RAM - + * This can be useful in (embedded) bootloader applications, where ROM is often limited. + */ +static const uint8_t sbox[256] = { + /*0 1 2 3 4 5 6 7 8 9 A B C D E F */ + 0x63, 0x7c, 0x77, 0x7b, 0xf2, 0x6b, 0x6f, 0xc5, 0x30, 0x01, 0x67, 0x2b, 0xfe, 0xd7, 0xab, 0x76, + 0xca, 0x82, 0xc9, 0x7d, 0xfa, 0x59, 0x47, 0xf0, 0xad, 0xd4, 0xa2, 0xaf, 0x9c, 0xa4, 0x72, 0xc0, + 0xb7, 0xfd, 0x93, 0x26, 0x36, 0x3f, 0xf7, 0xcc, 0x34, 0xa5, 0xe5, 0xf1, 0x71, 0xd8, 0x31, 0x15, + 0x04, 0xc7, 0x23, 0xc3, 0x18, 0x96, 0x05, 0x9a, 0x07, 0x12, 0x80, 0xe2, 0xeb, 0x27, 0xb2, 0x75, + 0x09, 0x83, 0x2c, 0x1a, 0x1b, 0x6e, 0x5a, 0xa0, 0x52, 0x3b, 0xd6, 0xb3, 0x29, 0xe3, 0x2f, 0x84, + 0x53, 0xd1, 0x00, 0xed, 0x20, 0xfc, 0xb1, 0x5b, 0x6a, 0xcb, 0xbe, 0x39, 0x4a, 0x4c, 0x58, 0xcf, + 0xd0, 0xef, 0xaa, 0xfb, 0x43, 0x4d, 0x33, 0x85, 0x45, 0xf9, 0x02, 0x7f, 0x50, 0x3c, 0x9f, 0xa8, + 0x51, 0xa3, 0x40, 0x8f, 0x92, 0x9d, 0x38, 0xf5, 0xbc, 0xb6, 0xda, 0x21, 0x10, 0xff, 0xf3, 0xd2, + 0xcd, 0x0c, 0x13, 0xec, 0x5f, 0x97, 0x44, 0x17, 0xc4, 0xa7, 0x7e, 0x3d, 0x64, 0x5d, 0x19, 0x73, + 0x60, 0x81, 0x4f, 0xdc, 0x22, 0x2a, 0x90, 0x88, 0x46, 0xee, 0xb8, 0x14, 0xde, 0x5e, 0x0b, 0xdb, + 0xe0, 0x32, 0x3a, 0x0a, 0x49, 0x06, 0x24, 0x5c, 0xc2, 0xd3, 0xac, 0x62, 0x91, 0x95, 0xe4, 0x79, + 0xe7, 0xc8, 0x37, 0x6d, 0x8d, 0xd5, 0x4e, 0xa9, 0x6c, 0x56, 0xf4, 0xea, 0x65, 0x7a, 0xae, 0x08, + 0xba, 0x78, 0x25, 0x2e, 0x1c, 0xa6, 0xb4, 0xc6, 0xe8, 0xdd, 0x74, 0x1f, 0x4b, 0xbd, 0x8b, 0x8a, + 0x70, 0x3e, 0xb5, 0x66, 0x48, 0x03, 0xf6, 0x0e, 0x61, 0x35, 0x57, 0xb9, 0x86, 0xc1, 0x1d, 0x9e, + 0xe1, 0xf8, 0x98, 0x11, 0x69, 0xd9, 0x8e, 0x94, 0x9b, 0x1e, 0x87, 0xe9, 0xce, 0x55, 0x28, 0xdf, + 0x8c, 0xa1, 0x89, 0x0d, 0xbf, 0xe6, 0x42, 0x68, 0x41, 0x99, 0x2d, 0x0f, 0xb0, 0x54, 0xbb, 0x16 }; + +static const uint8_t rsbox[256] = { + 0x52, 0x09, 0x6a, 0xd5, 0x30, 0x36, 0xa5, 0x38, 0xbf, 0x40, 0xa3, 0x9e, 0x81, 0xf3, 0xd7, 0xfb, + 0x7c, 0xe3, 0x39, 0x82, 0x9b, 0x2f, 0xff, 0x87, 0x34, 0x8e, 0x43, 0x44, 0xc4, 0xde, 0xe9, 0xcb, + 0x54, 0x7b, 0x94, 0x32, 0xa6, 0xc2, 0x23, 0x3d, 0xee, 0x4c, 0x95, 0x0b, 0x42, 0xfa, 0xc3, 0x4e, + 0x08, 0x2e, 0xa1, 0x66, 0x28, 0xd9, 0x24, 0xb2, 0x76, 0x5b, 0xa2, 0x49, 0x6d, 0x8b, 0xd1, 0x25, + 0x72, 0xf8, 0xf6, 0x64, 0x86, 0x68, 0x98, 0x16, 0xd4, 0xa4, 0x5c, 0xcc, 0x5d, 0x65, 0xb6, 0x92, + 0x6c, 0x70, 0x48, 0x50, 0xfd, 0xed, 0xb9, 0xda, 0x5e, 0x15, 0x46, 0x57, 0xa7, 0x8d, 0x9d, 0x84, + 0x90, 0xd8, 0xab, 0x00, 0x8c, 0xbc, 0xd3, 0x0a, 0xf7, 0xe4, 0x58, 0x05, 0xb8, 0xb3, 0x45, 0x06, + 0xd0, 0x2c, 0x1e, 0x8f, 0xca, 0x3f, 0x0f, 0x02, 0xc1, 0xaf, 0xbd, 0x03, 0x01, 0x13, 0x8a, 0x6b, + 0x3a, 0x91, 0x11, 0x41, 0x4f, 0x67, 0xdc, 0xea, 0x97, 0xf2, 0xcf, 0xce, 0xf0, 0xb4, 0xe6, 0x73, + 0x96, 0xac, 0x74, 0x22, 0xe7, 0xad, 0x35, 0x85, 0xe2, 0xf9, 0x37, 0xe8, 0x1c, 0x75, 0xdf, 0x6e, + 0x47, 0xf1, 0x1a, 0x71, 0x1d, 0x29, 0xc5, 0x89, 0x6f, 0xb7, 0x62, 0x0e, 0xaa, 0x18, 0xbe, 0x1b, + 0xfc, 0x56, 0x3e, 0x4b, 0xc6, 0xd2, 0x79, 0x20, 0x9a, 0xdb, 0xc0, 0xfe, 0x78, 0xcd, 0x5a, 0xf4, + 0x1f, 0xdd, 0xa8, 0x33, 0x88, 0x07, 0xc7, 0x31, 0xb1, 0x12, 0x10, 0x59, 0x27, 0x80, 0xec, 0x5f, + 0x60, 0x51, 0x7f, 0xa9, 0x19, 0xb5, 0x4a, 0x0d, 0x2d, 0xe5, 0x7a, 0x9f, 0x93, 0xc9, 0x9c, 0xef, + 0xa0, 0xe0, 0x3b, 0x4d, 0xae, 0x2a, 0xf5, 0xb0, 0xc8, 0xeb, 0xbb, 0x3c, 0x83, 0x53, 0x99, 0x61, + 0x17, 0x2b, 0x04, 0x7e, 0xba, 0x77, 0xd6, 0x26, 0xe1, 0x69, 0x14, 0x63, 0x55, 0x21, 0x0c, 0x7d }; + +/* The round constant word array, Rcon[i], contains the values given by + * x to the power (i-1) being powers of x (x is denoted as {02}) in the field GF(2^8) + */ +static const uint8_t Rcon[11] = { + 0x8d, 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x1b, 0x36 }; + +/* + * Jordan Goulder points out in PR #12 (https://github.com/kokke/tiny-AES-C/pull/12), + * that you can remove most of the elements in the Rcon array, because they are unused. + * + * From Wikipedia's article on the Rijndael key schedule @ https://en.wikipedia.org/wiki/Rijndael_key_schedule#Rcon + * + * "Only the first some of these constants are actually used – up to rcon[10] for AES-128 (as 11 round keys are needed), + * up to rcon[8] for AES-192, up to rcon[7] for AES-256. rcon[0] is not used in AES algorithm." + */ + + +/*****************************************************************************/ +/* Private functions: */ +/*****************************************************************************/ + +#define getSBoxValue(num) (sbox[(num)]) + +/* This function produces Nb(Nr+1) round keys. The round keys are used in each round to decrypt the states. */ +static void KeyExpansion(uint8_t RoundKey[AES_keyExpSize], const uint8_t Key[AES_KEYLEN]) +{ + unsigned i, j, k; + uint8_t tempa[4]; /* Used for the column/row operations */ + + /* The first round key is the key itself. */ + for (i = 0; i < Nk; ++i) + { + RoundKey[(i * 4) + 0] = Key[(i * 4) + 0]; + RoundKey[(i * 4) + 1] = Key[(i * 4) + 1]; + RoundKey[(i * 4) + 2] = Key[(i * 4) + 2]; + RoundKey[(i * 4) + 3] = Key[(i * 4) + 3]; + } + + /* All other round keys are found from the previous round keys. */ + for (i = Nk; i < Nb * (Nr + 1); ++i) + { + { + k = (i - 1) * 4; + tempa[0]=RoundKey[k + 0]; + tempa[1]=RoundKey[k + 1]; + tempa[2]=RoundKey[k + 2]; + tempa[3]=RoundKey[k + 3]; + + } + + if (i % Nk == 0) + { + /* This function shifts the 4 bytes in a word to the left once. */ + /* [a0,a1,a2,a3] becomes [a1,a2,a3,a0] */ + + /* Function RotWord() */ + { + const uint8_t u8tmp = tempa[0]; + tempa[0] = tempa[1]; + tempa[1] = tempa[2]; + tempa[2] = tempa[3]; + tempa[3] = u8tmp; + } + + /* SubWord() is a function that takes a four-byte input word and + * applies the S-box to each of the four bytes to produce an output word. + */ + + /* Function Subword() */ + { + tempa[0] = getSBoxValue(tempa[0]); + tempa[1] = getSBoxValue(tempa[1]); + tempa[2] = getSBoxValue(tempa[2]); + tempa[3] = getSBoxValue(tempa[3]); + } + + tempa[0] = tempa[0] ^ Rcon[i/Nk]; + } + + j = i * 4; k=(i - Nk) * 4; + RoundKey[j + 0] = RoundKey[k + 0] ^ tempa[0]; + RoundKey[j + 1] = RoundKey[k + 1] ^ tempa[1]; + RoundKey[j + 2] = RoundKey[k + 2] ^ tempa[2]; + RoundKey[j + 3] = RoundKey[k + 3] ^ tempa[3]; + } +} + +void AES_init_ctx(struct AES_ctx* ctx, const uint8_t key[AES_KEYLEN]) +{ + KeyExpansion(ctx->RoundKey, key); +} + +void AES_init_ctx_iv(struct AES_ctx* ctx, const uint8_t key[AES_KEYLEN], const uint8_t iv[AES_BLOCKLEN]) +{ + KeyExpansion(ctx->RoundKey, key); + memcpy (ctx->Iv, iv, AES_BLOCKLEN); +} + +void AES_ctx_set_iv(struct AES_ctx* ctx, const uint8_t iv[AES_BLOCKLEN]) +{ + memcpy (ctx->Iv, iv, AES_BLOCKLEN); +} + +/* This function adds the round key to state. + * The round key is added to the state by an XOR function. + */ +static void AddRoundKey(uint8_t round, state_t* state, const uint8_t RoundKey[AES_keyExpSize]) +{ + uint8_t i,j; + for (i = 0; i < 4; ++i) + { + for (j = 0; j < 4; ++j) + { + (*state)[i][j] ^= RoundKey[(round * Nb * 4) + (i * Nb) + j]; + } + } +} + +/* The SubBytes Function Substitutes the values in the + * state matrix with values in an S-box. + */ +static void SubBytes(state_t* state) +{ + uint8_t i, j; + for (i = 0; i < 4; ++i) + { + for (j = 0; j < 4; ++j) + { + (*state)[j][i] = getSBoxValue((*state)[j][i]); + } + } +} + +/* The ShiftRows() function shifts the rows in the state to the left. + * Each row is shifted with different offset. + * Offset = Row number. So the first row is not shifted. + */ +static void ShiftRows(state_t* state) +{ + uint8_t temp; + + /* Rotate first row 1 columns to left */ + temp = (*state)[0][1]; + (*state)[0][1] = (*state)[1][1]; + (*state)[1][1] = (*state)[2][1]; + (*state)[2][1] = (*state)[3][1]; + (*state)[3][1] = temp; + + /* Rotate second row 2 columns to left */ + temp = (*state)[0][2]; + (*state)[0][2] = (*state)[2][2]; + (*state)[2][2] = temp; + + temp = (*state)[1][2]; + (*state)[1][2] = (*state)[3][2]; + (*state)[3][2] = temp; + + /* Rotate third row 3 columns to left */ + temp = (*state)[0][3]; + (*state)[0][3] = (*state)[3][3]; + (*state)[3][3] = (*state)[2][3]; + (*state)[2][3] = (*state)[1][3]; + (*state)[1][3] = temp; +} + +static uint8_t xtime(uint8_t x) +{ + return ((x<<1) ^ (((x>>7) & 1) * 0x1b)); +} + +/* MixColumns function mixes the columns of the state matrix */ +static void MixColumns(state_t* state) +{ + uint8_t i; + uint8_t Tmp, Tm, t; + for (i = 0; i < 4; ++i) + { + t = (*state)[i][0]; + Tmp = (*state)[i][0] ^ (*state)[i][1] ^ (*state)[i][2] ^ (*state)[i][3] ; + Tm = (*state)[i][0] ^ (*state)[i][1] ; Tm = xtime(Tm); (*state)[i][0] ^= Tm ^ Tmp ; + Tm = (*state)[i][1] ^ (*state)[i][2] ; Tm = xtime(Tm); (*state)[i][1] ^= Tm ^ Tmp ; + Tm = (*state)[i][2] ^ (*state)[i][3] ; Tm = xtime(Tm); (*state)[i][2] ^= Tm ^ Tmp ; + Tm = (*state)[i][3] ^ t ; Tm = xtime(Tm); (*state)[i][3] ^= Tm ^ Tmp ; + } +} + +/* Multiply is used to multiply numbers in the field GF(2^8) + * Note: The last call to xtime() is unneeded, but often ends up generating a smaller binary + * The compiler seems to be able to vectorize the operation better this way. + * See https://github.com/kokke/tiny-AES-c/pull/34 + */ + +#define Multiply(x, y) \ + ( ((y & 1) * x) ^ \ + ((y>>1 & 1) * xtime(x)) ^ \ + ((y>>2 & 1) * xtime(xtime(x))) ^ \ + ((y>>3 & 1) * xtime(xtime(xtime(x)))) ^ \ + ((y>>4 & 1) * xtime(xtime(xtime(xtime(x)))))) \ + +#define getSBoxInvert(num) (rsbox[(num)]) + +/* MixColumns function mixes the columns of the state matrix. + * The method used to multiply may be difficult to understand for the inexperienced. + * Please use the references to gain more information. + */ +static void InvMixColumns(state_t* state) +{ + int i; + uint8_t a, b, c, d; + for (i = 0; i < 4; ++i) + { + a = (*state)[i][0]; + b = (*state)[i][1]; + c = (*state)[i][2]; + d = (*state)[i][3]; + + (*state)[i][0] = Multiply(a, 0x0e) ^ Multiply(b, 0x0b) ^ Multiply(c, 0x0d) ^ Multiply(d, 0x09); + (*state)[i][1] = Multiply(a, 0x09) ^ Multiply(b, 0x0e) ^ Multiply(c, 0x0b) ^ Multiply(d, 0x0d); + (*state)[i][2] = Multiply(a, 0x0d) ^ Multiply(b, 0x09) ^ Multiply(c, 0x0e) ^ Multiply(d, 0x0b); + (*state)[i][3] = Multiply(a, 0x0b) ^ Multiply(b, 0x0d) ^ Multiply(c, 0x09) ^ Multiply(d, 0x0e); + } +} + + +/* The SubBytes Function Substitutes the values in the + * state matrix with values in an S-box. + */ +static void InvSubBytes(state_t* state) +{ + uint8_t i, j; + for (i = 0; i < 4; ++i) + { + for (j = 0; j < 4; ++j) + { + (*state)[j][i] = getSBoxInvert((*state)[j][i]); + } + } +} + +static void InvShiftRows(state_t* state) +{ + uint8_t temp; + + /* Rotate first row 1 columns to right */ + temp = (*state)[3][1]; + (*state)[3][1] = (*state)[2][1]; + (*state)[2][1] = (*state)[1][1]; + (*state)[1][1] = (*state)[0][1]; + (*state)[0][1] = temp; + + /* Rotate second row 2 columns to right */ + temp = (*state)[0][2]; + (*state)[0][2] = (*state)[2][2]; + (*state)[2][2] = temp; + + temp = (*state)[1][2]; + (*state)[1][2] = (*state)[3][2]; + (*state)[3][2] = temp; + + /* Rotate third row 3 columns to right */ + temp = (*state)[0][3]; + (*state)[0][3] = (*state)[1][3]; + (*state)[1][3] = (*state)[2][3]; + (*state)[2][3] = (*state)[3][3]; + (*state)[3][3] = temp; +} + +/* Cipher is the main function that encrypts the PlainText. */ +static void Cipher(state_t* state, const uint8_t RoundKey[AES_keyExpSize]) +{ + uint8_t round = 0; + + /* Add the First round key to the state before starting the rounds. */ + AddRoundKey(0, state, RoundKey); + + /* There will be Nr rounds. + * The first Nr-1 rounds are identical. + * These Nr rounds are executed in the loop below. + * Last one without MixColumns() + */ + for (round = 1; ; ++round) + { + SubBytes(state); + ShiftRows(state); + if (round == Nr) { + break; + } + MixColumns(state); + AddRoundKey(round, state, RoundKey); + } + /* Add round key to last round */ + AddRoundKey(Nr, state, RoundKey); +} + +static void InvCipher(state_t* state, const uint8_t RoundKey[AES_keyExpSize]) +{ + uint8_t round = 0; + + /* Add the First round key to the state before starting the rounds. */ + AddRoundKey(Nr, state, RoundKey); + + /* There will be Nr rounds. + * The first Nr-1 rounds are identical. + * These Nr rounds are executed in the loop below. + * Last one without InvMixColumn() + */ + for (round = (Nr - 1); ; --round) + { + InvShiftRows(state); + InvSubBytes(state); + AddRoundKey(round, state, RoundKey); + if (round == 0) { + break; + } + InvMixColumns(state); + } +} + +/*****************************************************************************/ +/* Public functions: */ +/*****************************************************************************/ + +static void XorWithIv(uint8_t* buf, const uint8_t Iv[AES_BLOCKLEN]) +{ + uint8_t i; + for (i = 0; i < AES_BLOCKLEN; ++i) /* The block in AES is always 128bit no matter the key size */ + { + buf[i] ^= Iv[i]; + } +} + +void AES_CBC_decrypt_buffer(struct AES_ctx* ctx, uint8_t* buf, size_t length) +{ + size_t i; + uint8_t storeNextIv[AES_BLOCKLEN]; + for (i = 0; i < length; i += AES_BLOCKLEN) + { + memcpy(storeNextIv, buf, AES_BLOCKLEN); + InvCipher((state_t*)buf, ctx->RoundKey); + XorWithIv(buf, ctx->Iv); + memcpy(ctx->Iv, storeNextIv, AES_BLOCKLEN); + buf += AES_BLOCKLEN; + } +} + +/* Symmetrical operation: same function for encrypting as for decrypting. Note any IV/nonce should never be reused with the same key */ +void AES_CTR_xcrypt_buffer(struct AES_ctx* ctx, uint8_t* buf, size_t length) +{ + uint8_t buffer[AES_BLOCKLEN]; + + size_t i; + int bi; + for (i = 0, bi = AES_BLOCKLEN; i < length; ++i, ++bi) + { + if (bi == AES_BLOCKLEN) /* we need to regen xor compliment in buffer */ + { + memcpy(buffer, ctx->Iv, AES_BLOCKLEN); + Cipher((state_t*)buffer, ctx->RoundKey); + + /* Increment Iv and handle overflow */ + for (bi = (AES_BLOCKLEN - 1); bi >= 0; --bi) + { + /* inc will overflow */ + if (ctx->Iv[bi] == 255) + { + ctx->Iv[bi] = 0; + continue; + } + ctx->Iv[bi] += 1; + break; + } + bi = 0; + } + + buf[i] = (buf[i] ^ buffer[bi]); + } +} diff --git a/src/rhash/aes.h b/src/rhash/aes.h new file mode 100644 index 00000000..13e679ee --- /dev/null +++ b/src/rhash/aes.h @@ -0,0 +1,49 @@ +#ifndef AES_H +#define AES_H + +/* This file is sourced from https://github.com/kokke/tiny-AES-c, with unused code excised. + * This code is licensed under the Unlicense license, effectively public domain. + * https://github.com/kokke/tiny-AES-c/blob/f06ac37/unlicense.txt + */ + +#include +#include + +#define AES_BLOCKLEN 16 /* Block length in bytes - AES is 128b block only */ +#define AES_KEYLEN 16 /* Key length in bytes */ +#define AES_keyExpSize 176 + +struct AES_ctx +{ + uint8_t RoundKey[AES_keyExpSize]; + uint8_t Iv[AES_BLOCKLEN]; +}; + +#ifdef __cplusplus +extern "C" { +#endif + +void AES_init_ctx(struct AES_ctx* ctx, const uint8_t key[AES_KEYLEN]); +void AES_init_ctx_iv(struct AES_ctx* ctx, const uint8_t key[AES_KEYLEN], const uint8_t iv[AES_BLOCKLEN]); +void AES_ctx_set_iv(struct AES_ctx* ctx, const uint8_t iv[AES_BLOCKLEN]); + +/* buffer size MUST be mutile of AES_BLOCKLEN; + * Suggest https://en.wikipedia.org/wiki/Padding_(cryptography)#PKCS7 for padding scheme + * NOTES: you need to set IV in ctx via AES_init_ctx_iv() or AES_ctx_set_iv() + * no IV should ever be reused with the same key + */ +void AES_CBC_decrypt_buffer(struct AES_ctx* ctx, uint8_t* buf, size_t length); + +/* Same function for encrypting as for decrypting. + * IV is incremented for every block, and used after encryption as XOR-compliment for output + * Suggesting https://en.wikipedia.org/wiki/Padding_(cryptography)#PKCS7 for padding scheme + * NOTES: you need to set IV in ctx with AES_init_ctx_iv() or AES_ctx_set_iv() + * no IV should ever be reused with the same key + */ +void AES_CTR_xcrypt_buffer(struct AES_ctx* ctx, uint8_t* buf, size_t length); + +#ifdef __cplusplus +} +#endif + +#endif /* AES_H */ diff --git a/src/rhash/hash.c b/src/rhash/hash.c index 382076c2..11dc54a4 100644 --- a/src/rhash/hash.c +++ b/src/rhash/hash.c @@ -2,6 +2,7 @@ #include "../rc_compat.h" +#include "aes.h" #include "md5.h" #include @@ -16,6 +17,7 @@ #define MAX_BUFFER_SIZE 64 * 1024 * 1024 const char* rc_path_get_filename(const char* path); +static int rc_hash_whole_file(char hash[33], const char* path); /* ===================================================== */ @@ -362,6 +364,21 @@ static uint32_t rc_cd_find_file_sector(void* track_handle, const char* path, uin /* ===================================================== */ +static rc_hash_3ds_get_cia_normal_key_func _3ds_get_cia_normal_key_func = NULL; +static rc_hash_3ds_get_ncch_normal_keys_func _3ds_get_ncch_normal_keys_func = NULL; + +void rc_hash_init_3ds_get_cia_normal_key_func(rc_hash_3ds_get_cia_normal_key_func func) +{ + _3ds_get_cia_normal_key_func = func; +} + +void rc_hash_init_3ds_get_ncch_normal_keys_func(rc_hash_3ds_get_ncch_normal_keys_func func) +{ + _3ds_get_ncch_normal_keys_func = func; +} + +/* ===================================================== */ + const char* rc_path_get_filename(const char* path) { const char* ptr = path + strlen(path); @@ -1120,6 +1137,619 @@ static int rc_hash_n64(char hash[33], const char* path) return rc_hash_finalize(&md5, hash); } +static int rc_hash_nintendo_3ds_ncch(md5_state_t* md5, void* file_handle, uint8_t header[0x200], struct AES_ctx* cia_aes) +{ + struct AES_ctx ncch_aes; + uint8_t* hash_buffer; + uint64_t exefs_offset, exefs_real_size; + uint32_t exefs_buffer_size; + uint8_t primary_key[AES_KEYLEN], secondary_key[AES_KEYLEN]; + uint8_t fixed_key_flag, no_crypto_flag, seed_crypto_flag; + uint8_t crypto_method, secondary_key_x_slot; + uint16_t ncch_version; + uint32_t i; + uint8_t primary_key_y[AES_KEYLEN], program_id[sizeof(uint64_t)]; + uint8_t iv[AES_BLOCKLEN]; + uint8_t exefs_section_name[8]; + uint64_t exefs_section_offset, exefs_section_size; + + exefs_offset = ((uint32_t)header[0x1A3] << 24) | (header[0x1A2] << 16) | (header[0x1A1] << 8) | header[0x1A0]; + exefs_real_size = ((uint32_t)header[0x1A7] << 24) | (header[0x1A6] << 16) | (header[0x1A5] << 8) | header[0x1A4]; + + /* Offset and size are in "media units" (1 media unit = 0x200 bytes) */ + exefs_offset *= 0x200; + exefs_real_size *= 0x200; + + if (exefs_real_size > MAX_BUFFER_SIZE) + exefs_buffer_size = MAX_BUFFER_SIZE; + else + exefs_buffer_size = (uint32_t)exefs_real_size; + + /* This region is technically optional, but it should always be present for executable content (i.e. games) */ + if (exefs_offset == 0 || exefs_real_size == 0) + return rc_hash_error("ExeFS was not available"); + + /* NCCH flag 7 is a bitfield of various crypto related flags */ + fixed_key_flag = header[0x188 + 7] & 0x01; + no_crypto_flag = header[0x188 + 7] & 0x04; + seed_crypto_flag = header[0x188 + 7] & 0x20; + + ncch_version = (header[0x113] << 8) | header[0x112]; + + if (no_crypto_flag == 0) + { + rc_hash_verbose("Encrypted NCCH detected"); + + if (fixed_key_flag != 0) + { + /* Fixed crypto key means all 0s for both keys */ + memset(primary_key, 0, sizeof(primary_key)); + memset(secondary_key, 0, sizeof(secondary_key)); + rc_hash_verbose("Using fixed key crypto"); + } + else + { + if (_3ds_get_ncch_normal_keys_func == NULL) + return rc_hash_error("An encrypted NCCH was detected, but the NCCH normal keys callback was not set"); + + /* Primary key y is just the first 16 bytes of the header */ + memcpy(primary_key_y, header, sizeof(primary_key_y)); + + /* NCCH flag 3 indicates which secondary key x slot is used */ + crypto_method = header[0x188 + 3]; + + switch (crypto_method) + { + case 0x00: + rc_hash_verbose("Using NCCH crypto method v1"); + secondary_key_x_slot = 0x2C; + break; + case 0x01: + rc_hash_verbose("Using NCCH crypto method v2"); + secondary_key_x_slot = 0x25; + break; + case 0x0A: + rc_hash_verbose("Using NCCH crypto method v3"); + secondary_key_x_slot = 0x18; + break; + case 0x0B: + rc_hash_verbose("Using NCCH crypto method v4"); + secondary_key_x_slot = 0x1B; + break; + default: + snprintf((char*)header, 0x200, "Invalid crypto method %02X", (unsigned)crypto_method); + return rc_hash_error((const char*)header); + } + + /* We only need the program id if we're doing seed crypto */ + if (seed_crypto_flag != 0) + { + rc_hash_verbose("Using seed crypto"); + memcpy(program_id, &header[0x118], sizeof(program_id)); + } + + if (_3ds_get_ncch_normal_keys_func(primary_key_y, secondary_key_x_slot, seed_crypto_flag != 0 ? program_id : NULL, primary_key, secondary_key) == 0) + return rc_hash_error("Could not obtain NCCH normal keys"); + } + + switch (ncch_version) + { + case 0: + case 2: + rc_hash_verbose("Detected NCCH version 0/2"); + for (i = 0; i < 8; i++) + { + /* First 8 bytes is the partition id in reverse byte order */ + iv[7 - i] = header[0x108 + i]; + } + + /* Magic number for ExeFS */ + iv[8] = 2; + + /* Rest of the bytes are 0 */ + memset(&iv[9], 0, sizeof(iv) - 9); + break; + case 1: + rc_hash_verbose("Detected NCCH version 1"); + for (i = 0; i < 8; i++) + { + /* First 8 bytes is the partition id in normal byte order */ + iv[i] = header[0x108 + i]; + } + + /* Next 4 bytes are 0 */ + memset(&iv[8], 0, 4); + + /* Last 4 bytes is the ExeFS byte offset in big endian */ + iv[12] = (exefs_offset >> 24) & 0xFF; + iv[13] = (exefs_offset >> 16) & 0xFF; + iv[14] = (exefs_offset >> 8) & 0xFF; + iv[15] = exefs_offset & 0xFF; + break; + default: + snprintf((char*)header, 0x200, "Invalid NCCH version %04X", (unsigned)ncch_version); + return rc_hash_error((const char*)header); + } + } + + /* ASSERT: file position must be +0x200 from start of NCCH (i.e. end of header) */ + exefs_offset -= 0x200; + + if (cia_aes) + { + /* We have to decrypt the data between the header and the ExeFS so the CIA AES state is correct + * when we reach the ExeFS. This decrypted data is not included in the RetroAchievements hash */ + + /* This should never happen in practice, but just in case */ + if (exefs_offset > MAX_BUFFER_SIZE) + return rc_hash_error("Too much data required to decrypt in order to hash"); + + hash_buffer = (uint8_t*)malloc((uint32_t)exefs_offset); + if (!hash_buffer) + { + snprintf((char*)header, 0x200, "Failed to allocate %u bytes", (unsigned)exefs_offset); + return rc_hash_error((const char*)header); + } + + if (rc_file_read(file_handle, hash_buffer, (uint32_t)exefs_offset) != (uint32_t)exefs_offset) + { + free(hash_buffer); + return rc_hash_error("Could not read NCCH data"); + } + + AES_CBC_decrypt_buffer(cia_aes, hash_buffer, (uint32_t)exefs_offset); + free(hash_buffer); + } + else + { + /* No decryption needed, just skip over the in-between data */ + rc_file_seek(file_handle, (int64_t)exefs_offset, SEEK_CUR); + } + + hash_buffer = (uint8_t*)malloc(exefs_buffer_size); + if (!hash_buffer) + { + snprintf((char*)header, 0x200, "Failed to allocate %u bytes", (unsigned)exefs_buffer_size); + return rc_hash_error((const char*)header); + } + + /* Clear out crypto flags to ensure we get the same hash for decrypted and encrypted ROMs */ + memset(&header[0x114], 0, 4); + header[0x188 + 3] = 0; + header[0x188 + 7] &= ~(0x20 | 0x04 | 0x01); + + rc_hash_verbose("Hashing 512 byte NCCH header"); + md5_append(md5, header, 0x200); + + if (verbose_message_callback) + { + snprintf((char*)header, 0x200, "Hashing %u bytes for ExeFS (at NCCH offset %08X%08X)", (unsigned)exefs_buffer_size, (unsigned)(exefs_offset >> 32), (unsigned)exefs_offset); + verbose_message_callback((const char*)header); + } + + if (rc_file_read(file_handle, hash_buffer, exefs_buffer_size) != exefs_buffer_size) + { + free(hash_buffer); + return rc_hash_error("Could not read ExeFS data"); + } + + if (cia_aes) + { + rc_hash_verbose("Performing CIA decryption for ExeFS"); + AES_CBC_decrypt_buffer(cia_aes, hash_buffer, exefs_buffer_size); + } + + if (no_crypto_flag == 0) + { + rc_hash_verbose("Performing NCCH decryption for ExeFS"); + + AES_init_ctx_iv(&ncch_aes, primary_key, iv); + AES_CTR_xcrypt_buffer(&ncch_aes, hash_buffer, 0x200); + + for (i = 0; i < 8; i++) + { + memcpy(exefs_section_name, &hash_buffer[i * 16], sizeof(exefs_section_name)); + exefs_section_offset = ((uint32_t)hash_buffer[i * 16 + 11] << 24) | (hash_buffer[i * 16 + 10] << 16) | (hash_buffer[i * 16 + 9] << 8) | hash_buffer[i * 16 + 8]; + exefs_section_size = ((uint32_t)hash_buffer[i * 16 + 15] << 24) | (hash_buffer[i * 16 + 14] << 16) | (hash_buffer[i * 16 + 13] << 8) | hash_buffer[i * 16 + 12]; + + /* 0 size indicates an unused section */ + if (exefs_section_size == 0) + continue; + + /* Offsets must be aligned by a media unit */ + if (exefs_section_offset & 0x1FF) + return rc_hash_error("ExeFS section offset is misaligned"); + + /* Offset is relative to the end of the header */ + exefs_section_offset += 0x200; + + /* Check against malformed sections */ + if (exefs_section_offset + ((exefs_section_size + 0x1FF) & ~(uint64_t)0x1FF) > (uint64_t)exefs_real_size) + return rc_hash_error("ExeFS section would overflow"); + + if (memcmp(exefs_section_name, "icon", 4) == 0 || memcmp(exefs_section_name, "banner", 6) == 0) + { + /* Align size up by a media unit */ + exefs_section_size = (exefs_section_size + 0x1FF) & ~(uint64_t)0x1FF; + AES_init_ctx(&ncch_aes, primary_key); + } + else + { + /* We don't align size up here, as the padding bytes will use the primary key rather than the secondary key */ + AES_init_ctx(&ncch_aes, secondary_key); + } + + /* In theory, the section offset + size could be greater than the buffer size */ + /* In practice, this likely never occurs, but just in case it does, ignore the section or constrict the size */ + if (exefs_section_offset + exefs_section_size > exefs_buffer_size) + { + if (exefs_section_offset >= exefs_buffer_size) + continue; + + exefs_section_size = exefs_buffer_size - exefs_section_offset; + } + + if (verbose_message_callback) + { + exefs_section_name[7] = '\0'; + snprintf((char*)header, 0x200, "Decrypting ExeFS file %s at ExeFS offset %08X with size %08X", (const char*)exefs_section_name, (unsigned)exefs_section_offset, (unsigned)exefs_section_size); + verbose_message_callback((const char*)header); + } + + AES_CTR_xcrypt_buffer(&ncch_aes, &hash_buffer[exefs_section_offset], exefs_section_size & ~(uint64_t)0xF); + + if (exefs_section_size & 0x1FF) + { + /* Handle padding bytes, these always use the primary key */ + exefs_section_offset += exefs_section_size; + exefs_section_size = 0x200 - (exefs_section_size & 0x1FF); + + if (verbose_message_callback) + { + snprintf((char*)header, 0x200, "Decrypting ExeFS padding at ExeFS offset %08X with size %08X", (unsigned)exefs_section_offset, (unsigned)exefs_section_size); + verbose_message_callback((const char*)header); + } + + /* Align our decryption start to an AES block boundary */ + if (exefs_section_size & 0xF) + { + /* We're a little evil here re-using the IV like this, but this seems to be the best way to deal with this... */ + memcpy(iv, ncch_aes.Iv, sizeof(iv)); + exefs_section_offset &= ~(uint64_t)0xF; + + /* First decrypt these last bytes using the secondary key */ + AES_CTR_xcrypt_buffer(&ncch_aes, &hash_buffer[exefs_section_offset], 0x10 - (exefs_section_size & 0xF)); + + /* Now re-encrypt these bytes using the primary key */ + AES_init_ctx_iv(&ncch_aes, primary_key, iv); + AES_CTR_xcrypt_buffer(&ncch_aes, &hash_buffer[exefs_section_offset], 0x10 - (exefs_section_size & 0xF)); + + /* All of the padding can now be decrypted using the primary key */ + AES_ctx_set_iv(&ncch_aes, iv); + exefs_section_size += 0x10 - (exefs_section_size & 0xF); + } + + AES_init_ctx(&ncch_aes, primary_key); + AES_CTR_xcrypt_buffer(&ncch_aes, &hash_buffer[exefs_section_offset], exefs_section_size); + } + } + } + + md5_append(md5, hash_buffer, exefs_buffer_size); + + free(hash_buffer); + return 1; +} + +static uint32_t rc_hash_nintendo_3ds_cia_signature_size(uint8_t header[0x200]) +{ + uint32_t signature_type; + + signature_type = ((uint32_t)header[0] << 24) | (header[1] << 16) | (header[2] << 8) | header[3]; + switch (signature_type) + { + case 0x010000: + case 0x010003: + return 0x200 + 0x3C; + case 0x010001: + case 0x010004: + return 0x100 + 0x3C; + case 0x010002: + case 0x010005: + return 0x3C + 0x40; + default: + snprintf((char*)header, 0x200, "Invalid signature type %08X", (unsigned)signature_type); + return rc_hash_error((const char*)header); + } +} + +static int rc_hash_nintendo_3ds_cia(md5_state_t* md5, void* file_handle, uint8_t header[0x200]) +{ + const uint32_t CIA_HEADER_SIZE = 0x2020; /* Yes, this is larger than the header[0x200], but we only use the beginning of the header */ + const uint64_t CIA_ALIGNMENT_MASK = 64 - 1; /* sizes are aligned by 64 bytes */ + struct AES_ctx aes; + uint8_t iv[AES_BLOCKLEN], normal_key[AES_KEYLEN], title_key[AES_KEYLEN], title_id[sizeof(uint64_t)]; + uint32_t cert_size, tik_size, tmd_size; + int64_t cert_offset, tik_offset, tmd_offset, content_offset; + uint32_t signature_size, i; + uint16_t content_count; + uint8_t common_key_index; + + cert_size = ((uint32_t)header[0x0B] << 24) | (header[0x0A] << 16) | (header[0x09] << 8) | header[0x08]; + tik_size = ((uint32_t)header[0x0F] << 24) | (header[0x0E] << 16) | (header[0x0D] << 8) | header[0x0C]; + tmd_size = ((uint32_t)header[0x13] << 24) | (header[0x12] << 16) | (header[0x11] << 8) | header[0x10]; + + cert_offset = (CIA_HEADER_SIZE + CIA_ALIGNMENT_MASK) & ~CIA_ALIGNMENT_MASK; + tik_offset = (cert_offset + cert_size + CIA_ALIGNMENT_MASK) & ~CIA_ALIGNMENT_MASK; + tmd_offset = (tik_offset + tik_size + CIA_ALIGNMENT_MASK) & ~CIA_ALIGNMENT_MASK; + content_offset = (tmd_offset + tmd_size + CIA_ALIGNMENT_MASK) & ~CIA_ALIGNMENT_MASK; + + /* Check if this CIA is encrypted, if it isn't, we can hash it right away */ + + rc_file_seek(file_handle, tmd_offset, SEEK_SET); + if (rc_file_read(file_handle, header, 4) != 4) + return rc_hash_error("Could not read TMD signature type"); + + signature_size = rc_hash_nintendo_3ds_cia_signature_size(header); + if (signature_size == 0) + return 0; /* rc_hash_nintendo_3ds_cia_signature_size will call rc_hash_error, so we don't need to do so here */ + + rc_file_seek(file_handle, signature_size + 0x9E, SEEK_CUR); + if (rc_file_read(file_handle, header, 2) != 2) + return rc_hash_error("Could not read TMD content count"); + + content_count = (header[0] << 8) | header[1]; + + rc_file_seek(file_handle, 0x9C4 - 0x9E - 2, SEEK_CUR); + for (i = 0; i < content_count; i++) + { + if (rc_file_read(file_handle, header, 0x30) != 0x30) + return rc_hash_error("Could not read TMD content chunk"); + + /* Content index 0 is the main content (i.e. the 3DS executable) */ + if (((header[4] << 8) | header[5]) == 0) + break; + + content_offset += ((uint32_t)header[0xC] << 24) | (header[0xD] << 16) | (header[0xE] << 8) | header[0xF]; + } + + if (i == content_count) + return rc_hash_error("Could not find main content chunk in TMD"); + + if ((header[7] & 1) == 0) + { + /* Not encrypted, we can hash the NCCH immediately */ + rc_file_seek(file_handle, content_offset, SEEK_SET); + if (rc_file_read(file_handle, header, 0x200) != 0x200) + return rc_hash_error("Could not read NCCH header"); + + if (memcmp(&header[0x100], "NCCH", 4) != 0) + { + snprintf((char*)header, 0x200, "NCCH header was not at %08X%08X", (unsigned)(content_offset >> 32), (unsigned)content_offset); + return rc_hash_error((const char*)header); + } + + return rc_hash_nintendo_3ds_ncch(md5, file_handle, header, NULL); + } + + if (_3ds_get_cia_normal_key_func == NULL) + return rc_hash_error("An encrypted CIA was detected, but the CIA normal key callback was not set"); + + /* Acquire the encrypted title key, title id, and common key index from the ticket */ + /* These will be needed to decrypt the title key, and that will be needed to decrypt the CIA */ + + rc_file_seek(file_handle, tik_offset, SEEK_SET); + if (rc_file_read(file_handle, header, 4) != 4) + return rc_hash_error("Could not read ticket signature type"); + + signature_size = rc_hash_nintendo_3ds_cia_signature_size(header); + if (signature_size == 0) + return 0; + + rc_file_seek(file_handle, signature_size, SEEK_CUR); + if (rc_file_read(file_handle, header, 0xB2) != 0xB2) + return rc_hash_error("Could not read ticket data"); + + memcpy(title_key, &header[0x7F], sizeof(title_key)); + memcpy(title_id, &header[0x9C], sizeof(title_id)); + common_key_index = header[0xB1]; + + if (common_key_index > 5) + { + snprintf((char*)header, 0x200, "Invalid common key index %02X", (unsigned)common_key_index); + return rc_hash_error((const char*)header); + } + + if (_3ds_get_cia_normal_key_func(common_key_index, normal_key) == 0) + { + snprintf((char*)header, 0x200, "Could not obtain common key %02X", (unsigned)common_key_index); + return rc_hash_error((const char*)header); + } + + memset(iv, 0, sizeof(iv)); + memcpy(iv, title_id, sizeof(title_id)); + AES_init_ctx_iv(&aes, normal_key, iv); + + /* Finally, decrypt the title key */ + AES_CBC_decrypt_buffer(&aes, title_key, sizeof(title_key)); + + /* Now we can hash the NCCH */ + + rc_file_seek(file_handle, content_offset, SEEK_SET); + if (rc_file_read(file_handle, header, 0x200) != 0x200) + return rc_hash_error("Could not read NCCH header"); + + memset(iv, 0, sizeof(iv)); /* Content index is iv (which is always 0 for main content) */ + AES_init_ctx_iv(&aes, title_key, iv); + AES_CBC_decrypt_buffer(&aes, header, 0x200); + + if (memcmp(&header[0x100], "NCCH", 4) != 0) + { + snprintf((char*)header, 0x200, "NCCH header was not at %08X%08X", (unsigned)(content_offset >> 32), (unsigned)content_offset); + return rc_hash_error((const char*)header); + } + + return rc_hash_nintendo_3ds_ncch(md5, file_handle, header, &aes); +} + +static int rc_hash_nintendo_3ds_3dsx(md5_state_t* md5, void* file_handle, uint8_t header[0x200]) +{ + uint8_t* hash_buffer; + uint32_t header_size, reloc_header_size, code_size; + int64_t code_offset; + + header_size = (header[5] << 8) | header[4]; + reloc_header_size = (header[7] << 8) | header[6]; + code_size = ((uint32_t)header[0x13] << 24) | (header[0x12] << 16) | (header[0x11] << 8) | header[0x10]; + + /* 3 relocation headers are in-between the 3DSX header and code segment */ + code_offset = header_size + reloc_header_size * 3; + + if (code_size > MAX_BUFFER_SIZE) + code_size = MAX_BUFFER_SIZE; + + hash_buffer = (uint8_t*)malloc(code_size); + if (!hash_buffer) + { + snprintf((char*)header, 0x200, "Failed to allocate %u bytes", (unsigned)code_size); + return rc_hash_error((const char*)header); + } + + rc_file_seek(file_handle, code_offset, SEEK_SET); + + if (verbose_message_callback) + { + snprintf((char*)header, 0x200, "Hashing %u bytes for 3DSX (at %08X)", (unsigned)code_size, (unsigned)code_offset); + verbose_message_callback((const char*)header); + } + + if (rc_file_read(file_handle, hash_buffer, code_size) != code_size) + { + free(hash_buffer); + return rc_hash_error("Could not read 3DSX code segment"); + } + + md5_append(md5, hash_buffer, code_size); + + free(hash_buffer); + return 1; +} + +static int rc_hash_nintendo_3ds(char hash[33], const char* path) +{ + md5_state_t md5; + void* file_handle; + uint8_t header[0x200]; /* NCCH and NCSD headers are both 0x200 bytes */ + int64_t header_offset; + + file_handle = rc_file_open(path); + if (!file_handle) + return rc_hash_error("Could not open file"); + + rc_file_seek(file_handle, 0, SEEK_SET); + + /* If we don't have a full header, this is probably not a 3DS ROM */ + if (rc_file_read(file_handle, header, sizeof(header)) != sizeof(header)) + { + rc_file_close(file_handle); + return rc_hash_error("Could not read 3DS ROM header"); + } + + md5_init(&md5); + + if (memcmp(&header[0x100], "NCSD", 4) == 0) + { + /* A NCSD container contains 1-8 NCCH partitions */ + /* The first partition (index 0) is reserved for executable content */ + header_offset = ((uint32_t)header[0x123] << 24) | (header[0x122] << 16) | (header[0x121] << 8) | header[0x120]; + /* Offset is in "media units" (1 media unit = 0x200 bytes) */ + header_offset *= 0x200; + + /* We include the NCSD header in the hash, as that will ensure different versions of a game result in a different hash + * This is due to some revisions / languages only ever changing other NCCH paritions (e.g. the game manual) + */ + rc_hash_verbose("Hashing 512 byte NCSD header"); + md5_append(&md5, header, sizeof(header)); + + if (verbose_message_callback) + { + snprintf((char*)header, sizeof(header), "Detected NCSD header, seeking to NCCH partition at %08X%08X", (unsigned)(header_offset >> 32), (unsigned)header_offset); + verbose_message_callback((const char*)header); + } + + rc_file_seek(file_handle, header_offset, SEEK_SET); + if (rc_file_read(file_handle, header, sizeof(header)) != sizeof(header)) + { + rc_file_close(file_handle); + return rc_hash_error("Could not read 3DS NCCH header"); + } + + if (memcmp(&header[0x100], "NCCH", 4) != 0) + { + rc_file_close(file_handle); + snprintf((char*)header, sizeof(header), "3DS NCCH header was not at %08X%08X", (unsigned)(header_offset >> 32), (unsigned)header_offset); + return rc_hash_error((const char*)header); + } + } + + if (memcmp(&header[0x100], "NCCH", 4) == 0) + { + if (rc_hash_nintendo_3ds_ncch(&md5, file_handle, header, NULL)) + { + rc_file_close(file_handle); + return rc_hash_finalize(&md5, hash); + } + + rc_file_close(file_handle); + return rc_hash_error("Failed to hash 3DS NCCH container"); + } + + /* Couldn't identify either an NCSD or NCCH */ + + /* Try to identify this as a CIA */ + if (header[0] == 0x20 && header[1] == 0x20 && header[2] == 0x00 && header[3] == 0x00) + { + rc_hash_verbose("Detected CIA, attempting to find executable NCCH"); + + if (rc_hash_nintendo_3ds_cia(&md5, file_handle, header)) + { + rc_file_close(file_handle); + return rc_hash_finalize(&md5, hash); + } + + rc_file_close(file_handle); + return rc_hash_error("Failed to hash 3DS CIA container"); + } + + /* This might be a homebrew game, try to detect that */ + if (memcmp(&header[0], "3DSX", 4) == 0) + { + rc_hash_verbose("Detected 3DSX"); + + if (rc_hash_nintendo_3ds_3dsx(&md5, file_handle, header)) + { + rc_file_close(file_handle); + return rc_hash_finalize(&md5, hash); + } + + rc_file_close(file_handle); + return rc_hash_error("Failed to hash 3DS 3DSX container"); + } + + /* Raw ELF marker (AXF/ELF files) */ + if (memcmp(&header[0], "\x7f\x45\x4c\x46", 4) == 0) + { + rc_hash_verbose("Detected AXF/ELF file, hashing entire file"); + + /* Don't bother doing anything fancy here, just hash entire file */ + rc_file_close(file_handle); + return rc_hash_whole_file(hash, path); + } + + rc_file_close(file_handle); + return rc_hash_error("Not a 3DS ROM"); +} + static int rc_hash_nintendo_ds(char hash[33], const char* path) { uint8_t header[512]; @@ -2083,6 +2713,7 @@ int rc_hash_generate_from_buffer(char hash[33], uint32_t console_id, const uint8 return rc_hash_snes(hash, buffer, buffer_size); case RC_CONSOLE_NINTENDO_64: + case RC_CONSOLE_NINTENDO_3DS: case RC_CONSOLE_NINTENDO_DS: case RC_CONSOLE_NINTENDO_DSI: return rc_hash_file_from_buffer(hash, console_id, buffer, buffer_size); @@ -2407,6 +3038,9 @@ int rc_hash_generate_from_file(char hash[33], uint32_t console_id, const char* p case RC_CONSOLE_NINTENDO_64: return rc_hash_n64(hash, path); + case RC_CONSOLE_NINTENDO_3DS: + return rc_hash_nintendo_3ds(hash, path); + case RC_CONSOLE_NINTENDO_DS: case RC_CONSOLE_NINTENDO_DSI: return rc_hash_nintendo_ds(hash, path); @@ -2539,6 +3173,14 @@ void rc_hash_initialize_iterator(struct rc_hash_iterator* iterator, const char* } break; + case '3': + if (rc_path_compare_extension(ext, "3ds") || + rc_path_compare_extension(ext, "3dsx")) + { + iterator->consoles[0] = RC_CONSOLE_NINTENDO_3DS; + } + break; + case '7': if (rc_path_compare_extension(ext, "7z")) { @@ -2562,6 +3204,11 @@ void rc_hash_initialize_iterator(struct rc_hash_iterator* iterator, const char* { iterator->consoles[0] = RC_CONSOLE_ATARI_7800; } + else if (rc_path_compare_extension(ext, "app") || + rc_path_compare_extension(ext, "axf")) + { + iterator->consoles[0] = RC_CONSOLE_NINTENDO_3DS; + } break; case 'b': @@ -2647,6 +3294,12 @@ void rc_hash_initialize_iterator(struct rc_hash_iterator* iterator, const char* { iterator->consoles[0] = RC_CONSOLE_SUPER_CASSETTEVISION; } + else if (rc_path_compare_extension(ext, "cci") || + rc_path_compare_extension(ext, "cia") || + rc_path_compare_extension(ext, "cxi")) + { + iterator->consoles[0] = RC_CONSOLE_NINTENDO_3DS; + } break; case 'd': @@ -2665,6 +3318,15 @@ void rc_hash_initialize_iterator(struct rc_hash_iterator* iterator, const char* } break; + case 'e': + if (rc_path_compare_extension(ext, "elf")) + { + /* This should probably apply to more consoles in the future */ + /* Although in any case this just hashes the entire file */ + iterator->consoles[0] = RC_CONSOLE_NINTENDO_3DS; + } + break; + case 'f': if (rc_path_compare_extension(ext, "fig")) { diff --git a/test/Makefile b/test/Makefile index 83acfb38..0de999ef 100644 --- a/test/Makefile +++ b/test/Makefile @@ -56,6 +56,7 @@ OBJ=$(RC_SRC)/rc_compat.o \ $(RC_CHEEVOS_SRC)/runtime_progress.o \ $(RC_CHEEVOS_SRC)/trigger.o \ $(RC_CHEEVOS_SRC)/value.o \ + $(RC_HASH_SRC)/aes.o \ $(RC_HASH_SRC)/cdreader.o \ $(RC_HASH_SRC)/hash.o \ $(RC_HASH_SRC)/md5.o \ diff --git a/test/rcheevos-test.vcxproj b/test/rcheevos-test.vcxproj index 19e050b3..91b83fd8 100644 --- a/test/rcheevos-test.vcxproj +++ b/test/rcheevos-test.vcxproj @@ -155,6 +155,7 @@ + @@ -244,6 +245,7 @@ +